Evaluation of allelic frequencies distribution of the BoLA-DRB3 gene polymorphisms within exon 2 using PCR-RFLP

Cover Page

Cite item

Full Text

Abstract

BoLA-DRB3 is part of the major histocompatibility complex, which has more than 100 polymorphic sites in exon 2. This gene is associated with immunological traits, resistance or susceptibility to various diseases and productive traits and milk quality in cattle. The aim of our paper was to conduct a primary assessment of the allelic polymorphism of exon 2 of the BoLA-DRB3 gene in the Ural region using nested PCR and PCR-RFLP. The object of research were Holstein cattle (n=55). Restriction fragment lengths were determined using electrophoresis in an agarose gel. For the BoLA-DRB3.2 gene the most common genotypes were identi ed: *23/*24, *24/*24, *16/*16, *24/*28, *9/*38 with a prevalence from 8.9 % to 26.5 %; genotypes with a lower distribution frequency - *24/*38, *24/*9, *2/*37, *16/*26. In studied samples the majority of identified alleles (*2, *9, *26, *37, *38) were previously proven to be neutral. The results of genotyping of Holstein cattle according to the polymorphism of the BoLA-DRB3.2 gene were obtained: in the studied population, 56 % of individuals had a genotype associated with susceptibility to the leukemia virus, 29 % associated with resistance and 15 % had neutral genotype. Based on the obtained results, it can be concluded that there is a need for genetic screening of cattle populations for the BoLA-DRB3 polymorphism, especially in epidemiologically disadvantaged regions for the incidence of leukemia. The obtained data on the genotypes of animals will be used in breeding programs to saturate herds of farm animals with alleles of resistance to the bovine leukemia virus.

About the authors

N. A Bezborodova

Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences

Email: n-bezborodova@mail.ru
620142, Ekaterinburg, ul. Belinskogo, 112a

M. V Bytov

Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences

620142, Ekaterinburg, ul. Belinskogo, 112a

N. A Martynov

Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences

620142, Ekaterinburg, ul. Belinskogo, 112a

O. V Sokolova

Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences

620142, Ekaterinburg, ul. Belinskogo, 112a

M. V Petropavlovsky

Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences

620142, Ekaterinburg, ul. Belinskogo, 112a

S. V Volskaya

Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences

620142, Ekaterinburg, ul. Belinskogo, 112a

References

  1. Характеристика быков-производителей с комплексными генотипами генов BLG и INOS по молочной продуктивности женских предков / Х. Х. Гильманов, С. В. Тюлькин, И. В. Ржанова и др. // Ученые записки казанской государственной академии ветеринарной медицины им. Н.Э. Баумана. 2020. Т. 241. № 1. С. 71-75. doi: 10.31588/2413-4201-1883-241-1-71-76.
  2. Метаболические заболевания крупного рогатого скота / В. А. Мищенко, А. В. Мищенко, Р. В. Яшин и др. // Ветеринария сегодня. 2021. Т. 10. № 3. С. 184-189. doi. 10.29326/2304-196X-2021-3-38-184-189.
  3. Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world / L. F. Brito, N. Bedere, F. Douhard, et al. // Ani-mal. 2021. Vol. 15. URL: https://www.sciencedirect.com/science/article/pii/S175173112100135X?via%3Dihub (дата обращения: 10.02.2022). doi: 10.1016/j.animal.2021.100292.
  4. Detection and immunobiological characterization of bovine leukemia virus in Russian Federation territory in dependence on geographikal variations / M. V. Petropavlovskiy, I. M. Donnik, N. A. Bezborodova, et al. // Journal of Integrated OMICS. 2019. Vol. 9. No. 1. URL: https://www.jiomics.com/index.php/jiomics/article/view/157 (дата обращения: 10.02.2022) doi: 10.5584/jiomics.v9i1.255.
  5. Early events following bovine leukaemia virus infection in calves with different alleles of the major histocompatibility complex DRB3 gene / A. Forletti, C. M. Lützelschwab, R. Cepeda, et al. // Veterinary Research. 2020. Vol. 51. No. 1. URL: https://veterinaryresearch.biomedcentral.com/articles/10.1186/s13567-019-0732-1 (дата обращения: 10.02.2022). doi: 10.1186/s13567-019-0732-1.
  6. Frie M. C., Coussens P. M. Bovine leukemia virus: A major silent threat to proper immune responses in cattle // Veterinary Immunology and Immunopathology. 2015. Vol. 163. No. 3. P. 103-114. doi. 10.1016/j.vetimm.2014.11.014.
  7. Bovine leukemia virus and cow longevity in Michigan dairy herds / P. C. Bartlett, B. Norby, T. M. Byrem et al. // Journal of Dairy Science. 2013. Vol. 96 No. 3. P. 1591-1597. doi. 10.3168/jds.2012-5930.
  8. Lifetime effects of infection with bovine leukemia virus on longevity and milk production of dairy cows / O. Nekouei, J. Vanleeuwen, H. Stryhn, et al. // Preventive Veterinary Medicine. 2016. Vol. 133. URL: https://pubmed.ncbi.nlm.nih.gov/27720022/ (дата обращения: 10.02.2022). doi: 10.1016/j.prevetmed.2016.09.011.
  9. Emanuelson U., Scherling K., Pettersson H. Relation-ships between herd bovine leukemia virus infection status and reproduction, disease incidence, and productivity in Swedish dairy herds // Preventive Veterinary Medicine. 1992. Vol. 12. No. 1. P. 121-131. doi. 10.1016/0167-5877(92)90075-Q.
  10. Bovine leukemia virus discovered in human blood / G. C. Buehring, A. Delaney, H. Shen, et al. // BMC Infectious Diseases. 2019. Vol. 19. No. 1. URL: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-019-3891-9 (дата обращения: 10.02.2022). doi: 10.1186/s12879-019-3891-9.
  11. No evidence of bovine leukemia virus proviral DNA and antibodies in human specimens from Japan / M. P. Yamanaka, S. Saito, Y. Hara, et al. // Retrovirology. 2022. Vol. 19. No. 1. URL: https://retrovirology.biomedcentral.com/articles/10.1186/s12977-022-00592-6 (дата обра-щения: 10.02.2022). doi: 10.1186/s12977-022-00592-6.
  12. Relationship between allelic heterozygosity in BoLA-DRB3 and proviral loads in bovine leukemia virus-infected cattle / H. E. Daous, S. Mitoma, E. Elhanafy, et al. // Animals. 2021. Vol. 11. No. 3. URL: https://www.mdpi.com/2076-2615/11/3/647 (дата обращения: 10.02.2022). doi: 10.3390/ani11030647.
  13. Morales J., Lopez-Herrera A., Zuluaga J. Association of BoLA DRB3 gene polymorphisms with BoHV-1 infection and zootechnical traits // Open Veterinary Journal. 2020. Vol. 10. No. 3. P. 331-339. doi. 10.4314/ovj.v10i3.12.
  14. Sequence and PCR-RFLP analysis of 14 novel BoLA-DRB3 alleles / A. Gelhaus, L. Schnittger, D. Mehlitz, et al. // Animal Genetics. 1995. Vol. 26. No. 3. P. 147-153. doi. 10.1111/j.1365-2052.1995.tb03154.x.
  15. van Eijk M. J. T., Stewart-Haynes J. A., Lewin H. A. Extensive polymorphism of the BoLA-DRB3 gene distinguished by PCR-RFLP // Animal Genetics. 1992. Vol. 23. No. 6. P. 483-496. doi. 10.1111/j.1365-2052.1992.tb00168.x.
  16. Polymorphism in BoLA-DRB3 exon 2 correlates with resistance to persistent lymphocytosis caused by bovine leukemia virus / A. Xu, M. J. van Eijk, C. Park, et al. // The Journal of Immunology. 1993. Vol. 151. No. 12. P. 6977-6985. doi. 10.4049/jimmunol.151.12.6977.
  17. Takeshima S. N., Ohno A., Aida Y. Bovine leukemia virus proviral load is more strongly associated with bovine major histocompatibility complex class II DRB3 polymorphism than with DQA1 polymorphism in Hol-stein cow in Japan // Retrovirology. 2019. Vol. 16. No. 1. URL: https://retrovirology.biomedcentral.com/articles/10.1186/s12977-019-0476-z (дата обращения: 10.02.2022). doi: 10.1186/s12977-019-0476-z.
  18. Связь генотипов BoLA-DRB3 с племенной ценностью по показателям молочной продуктивности в российской популяции молочного скота / А. А. Сермягин, Н. В. Ковалюк, А. Н. Ермилов и др. // Сельскохозяйственная биология. 2016. Т. 51. № 6. С. 775-781. doi. 10.15389/agrobiology.2016.6.775rus.
  19. Association of BLV infection profiles with alleles of the BoLA-DRB3.2 gene / M. A. Juliarena, M. Poli, L. Sala, et al. // Animal Genetics. 2008. Vol. 39. No. 4. P. 432-438. doi. 10.1111/j.1365-2052.2008.01750.x.
  20. Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle / T. Miyasaka, S. N. Takeshima, M. Jimba, et al. // Tissue Antigens. 2013. Vol. 81. No. 2. P. 72-82. doi. 10.1111/tan.12041.
  21. Bovine major histocompatibility complex (BoLA) heterozygote advantage against the outcome of bovine leukemia virus infection / C. W. Lo, S. N. Takeshima, S. Wada, et al. // HLA. 2021. Vol. 98. No. 2. P. 132-139. doi. 10.1111/tan.14285.
  22. Приоритизация генов, ассоциированных с патогенезом лейкоза у крупного рогатого скота / Н. С. Юдин, Н. Л. Подколодный, Т. А. Агаркова и др. // Вавиловский журнал генетики и селекции. 2018. Т. 22 № 8. С. 1063-1069. doi. 10.18699/VJ18.451.
  23. BoLA-DRB3 polymorphism is associated with differential susceptibility to bovine leukemia virus-induced lymphoma and proviral load / C. W. Lo, L. Borjigin, S. Saito, et al. //Viruses. 2020. Vol. 12. No. 3. URL: https://www.mdpi.com/1999-4915/12/3/352 (дата обращения: 10.02.2022). doi: 10.3390/v12030352.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences