Реконструкция сетей дождевой канализации в исторической границе города Самары

Обложка


Цитировать

Полный текст

Аннотация

Состояние централизованной системы водоотведения за несколько десятков лет претерпело некоторые изменения, в статье рассматривается проблема негативного влияния снижения расхода водопотребления на инженерные сооружения − от выпадения и цементирования осадка в трубопроводах и концентрирования стока вследствие уменьшения расхода до влияния на работу насосных станций и очистных сооружений. Выдвигается предположение, как изучаемую проблему частично можно решить при помощи дождевых сточных вод, которые отводятся без должной очистки в водные объекты. В статье рассмотрены существующие системы водоотведения в Самаре, стоимость очистных сооружений для дождевых вод, а также предлагаемый проект реконструкции дождевой сети для выпусков, находящихся в границах исторической части Самары.

Полный текст

Поверхностный сток воздействует на водные объекты периодически, причем интенсивность воздействия резко колеблется. При определении пропускной способности очистных сооружений ориентация на максимальные расходы ливневого стока редкой повторяемости, на прием и отведение которого рассчитывается сеть дождевой канализации, нецелесообразна, так как это приводит к повышенным затратам на строительство очистных сооружений при их кратковременной работе на полную производительность [1].

Системы очистки поверхностного стока должны быть рассчитаны на значительные расходы, что требует высоких капитальных затрат. Специфика химического состава сточных вод (достаточно высокие концентрации нефтепродуктов и СПАВ (синтетические поверхностно активные вещества) обусловливает применение дорогостоящих систем сорбционной очистки с частой заменой фильтрующих загрузок, поэтому эксплуатационные затраты чрезвычайно высоки [2, 3].

Общая водосборная площадь селитебной территории, с которой осуществляется сброс поверхностного стока через сети дождевой канализации в Саратовское водохранилище, составляет порядка 3900 га, в Самарский залив Саратовского водохранилища – 7930 га. Общая водосборная площадь промышленных предприятий – около 1461 га [4].

Годовой расход сточных вод оценивается примерно в 42,5 млн м3/год, в том числе: с селитебной территории – 28 млн м3/год; с территории промышленных предприятий (включая условно чистые стоки) – 9 млн м3/год; дренажные (инфильтрационные) воды – 4,5 млн м3/год [4].

Генпланом городского округа Самара предусмотрено строительство очистных сооружений по очистке ливневых сточных вод, сбрасываемых с территории города в Саратовское водохранилище − 10 выпусков и в реку Самару − 13 выпусков. Общий объем неочищенных ливневых и производственных сточных вод составляет более 14,0 млн м3/год. Валовое количество загрязняющих веществ, поступающих с этими сточными водами в водные объекты, сопоставимо с объемом загрязнений, сбрасываемых с очистных сооружений Самары в Саратовское водохранилище согласно Постановлению Администрации городского округа Самара от 25 июля 2012 года № 903.

Так, например, проектирование и строительство очистных сооружений дождевой канализации для выпуска «Горячий ключ» производительностью 27 тыс. м3/сут (1126 м3/ч) обошлось бы бюджету в 241 351,8 тыс. р.

Дождевая канализация Самары выполнена по полной раздельной схеме канализования. В систему дождевой канализации сбрасывается:

  • поверхностный сток с промышленной и селитебной территории;
  • промышленный сток, дренажный сток теплосети;
  • дренаж грунтовых вод с промышленной и селитебной зон;
  • поливомоечные воды.

В границах исторической части Самары находятся 10 выпусков дождевой канализации (рис. 1), 6 осуществляют сброс в Саратовское водохранилище (р. Волга), остальные 4 − в залив Самарский Саратовского водохранилища (р. Самара) [5]. Информация о границе исторической части города взята из [6].

 

Рис. 1. Схема выпусков ливневой канализации в исторической части города Самары [6].

Выпуски сточных вод в Саратовское вдхр.: 6 – Ульяновский; 7 – Вилоновский; 8 – Некрасовский; 9 – Ленинградский; 10 – Комсомольский. Выпуски сточных вод в р. Самару: 1 – Хлебная площадь; 2 – Крупский; 3 – Судоремонтный завод; 4 – Горячий ключ; 5 – Деповский

 

В табл. 1 приводится информация о площади водосбора, длине коллектора, диаметре выпуска за 2004 и 2013 гг. согласно [7] и Постановлению Администрации городского округа Самара от 27 июля 2012 г. № 947.

 

Таблица 1. Данные о выпусках ливневой канализации в исторической части города за 2004 и 2013 гг.

Выпуск

Площадь водосбора, га

Длина коллектора, м

Диаметр выпуска, мм

2004

2013

2004

2013

2004

2013

Сброс в р. Волгу

Ульяновский

528,77

806,77

5809

4940

900

1420х2

Вилоновский

11,25

50,45

850

850

800

800

Некрасовский

16,95

56,95

440

440

600

600

Ленинградский

13,05

73,05

692

692

600

600

Пионерский

86,7

450

600

Комсомольский

15,6

49,57

680

680

600

600

Сброс в р. Самару

Хлебная площадь

4,7

114,7

50

50

900

900

Крупский

5,7

8,6

200

200

1000

1000

Судоремонтный завод

Горячий ключ

58,06

121,56

2197,5

2197,5

1800

1800

 

Выпуски «Ульяновский», «Вилоновский», «Некрасовский», представленные в табл. 1, отводящие поверхностные стоки в Саратовское водохранилище, расположены во втором и третьем поясах зоны санитарной охраны водозаборных сооружений города согласно Постановлению Администрации городского округа Самара от 27 июля 2012 г. № 947.

Согласно Постановлению Администрации городского округа Самара от 27 июля 2012 г. № 947 площадь водосбора рассматриваемых выпусков за десять лет увеличилась, также вырос процент и площадь водонепроницаемой поверхности, что неизбежно привело к увеличению поверхностного стока. Из табл. 1, основанной на вышеупомянутом документе, видно насколько увеличилась площадь водосбора и расчетный объём ПоСВ (поверхностные сточные воды), сбрасываемый через указанные выпуски в поверхностные водные объекты.

Что же касается значительных колебаний расходов за время одного дождя, то, согласно [8], это связано c урбанизированностью территорий, где вследствие большого количества водонепроницаемых поверхностей, во-первых, наблюдается изменение водного баланса территории c увеличением количества поверхностного стока в 2−4 раза, во-вторых, повышение пиковых расходов поверхностного стока ввиду низкой водозадерживающей способности (рис. 2).

 

Рис. 2. Гидрограф поверхностного стока c различных водосборных территорий [8]: а – естественная среда; б – небольшие города; в – крупные города

 

Не только выпуски, находящиеся в историческом центре города (карта границы исторической части отмечена на рис. 1), не оборудованы локальными очистными сооружениями, но вообще все выпуски дождевой канализации Самары сбрасывают загрязненные стоки в водоем без очистки [9].

Выпуски ливневой канализации в исторической части города, отводящие ПоСВ c волжского склона («Ульяновский», «Вилоновский», «Некрасовский», «Ленинградский», «Пионерский», «Комсомольский»), не оборудованы очистными сооружениями ввиду стесненных условий, а также потому, что являются выпусками руслового типа. Так, выпуски «Вилоновский», «Некрасовский», «Ленинградский», «Пионерский» и «Комсомольский» проложены под набережной, а это означает, что очистные сооружения (или аккумулирующие резервуары) должны быть выполнены в подземном исполнении, поскольку для надземных очистных сооружений отсутствует площадка под строительство. Также строительство наземных очистных сооружений на набережной негативно повлияло бы на эстетический облик города и негативно отразилось на архитектурном наследии.

Поскольку проектирование очистных и аккумулирующих резервуаров в таких условиях является непростой инженерной задачей, предполагается разработать несколько вариантов будущей схемы реконструкции дождевой системы канализации (рис. 3).

 

Рис. 3. Вариант реконструкции выпусков дождевой канализации [10]

 

Идея проекта реконструкции заключается в том, что сток, который в данный момент сбрасывается в водоем без очистки, будет регулироваться и очищаться до нормативов сброса в канализационную сеть, где, смешиваясь с хозяйственно-бытовым стоком, в дальнейшем будет направляться на городские канализационные очистные сооружения.

Влияние снижения норм водопотребления на хозяйственно-бытовую канализацию

В последние несколько десятилетий нормы водопотребления неуклонно сокращались, что нашло отражение в СП 31.13330 «СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения» сначала 2012, а затем и 2021 года. Сравнение норм водопотребления представлено в табл. 2. Так, например, расчетное хозяйственно-питьевое водопотребление для районов с централизованным горячим водоснабжением уменьшилось почти в два раза.

 

Таблица 2. Сравнение норм водопотребления на хозяйственно-питьевые нужды

Показатель

СНиП 84*

СП 2012**

СП 2021***

Степень благоустройства районов жилой застройки

Расчетное хозяйственно-питьевое водопотребление

в поселениях и городских округах на одного жителя среднесуточное (за год), л/сут

Застройка зданиями, оборудованными внутренним водопроводом и канализацией:

без ванн

125–160

125–160

То же, с ванными и местными водонагревателями

160–230

160–230

140–180

То же, с централизованным горячим водоснабжением

230–350

220–280

165–180

СНиП 84* – СНиП 2.04.02-84 «Водоснабжение. Наружные сети и сооружения»

СП 2012** – СП 31.13330.2012 «СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения»

СП 2021*** – СП 31.13330.2021«СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения»

 

После нескольких социальных и экономических кризисов много предприятий города было закрыто, что существенно уменьшило объем сбросов промышленных стоков. Из-за повышающихся тарифов население сократило количество потребляемой воды, что в свою очередь нашло отражение в нормативных документах.

В связи с тем, что объем хозяйственно-бытовых стоков уменьшился, в трубопроводах, запроектированных и смонтированных в прошлом веке, уменьшилась и скорость движения в сети водоотведения города. Уменьшение скорости движения воды привело к биообрастанию в трубопроводе, скапливанию нежелательных газов и т. д.

Предполагается, что в коллекторе на определенное время, при минимальных расходах поверхностного стока или любого другого, могут накапливаться загрязнения, которые затем с увеличением расхода и скорости течения воды взвешиваются потоком и перемещаются на нижележащие участки сети [9].

Однако в настоящее время в действующих системах водоотведения, в условиях снижения расходов сточных вод вследствие внедрения систем учета расходов воды в быту и в промышленности, существующие диаметры и уклоны труб отдельных участков не обеспечивают самоочищающиеся скорости, поэтому взвешенные вещества оседают в лотках труб. В результате на дне трубопровода постепенно оседают и накапливаются различные твердые вещества, в особенности песок, прочно «цементирующийся» канализационным илом. Образовавшийся таким образом осадок «укатывается» слоем текущей воды, увеличивая шероховатость труб и, соответственно, сопротивление потоку жидкости [11]. Многокомпонентность состава, разнообразность фракций протекающей смеси, непостоянство гидродинамики потока, из-за уменьшений скорости стока, приводят к выпадению осадка в лотки сетей и сооружений, а также обрастанию биопленкой стенок коллекторов. Далее в выпавшем осадке идут процессы брожения, сопровождающиеся выделением метана и аммиака. Жизнедеятельность бактерий в закрепившейся биопленке влечет за собой выделение в водную среду сероводорода и углекислого газа [12].

Разрабатываются технические альтернативы, обеспечивающие высокую эффективность использования воды, в дополнение к существующим централизованным системам транспортировки и очистки воды и сточных вод. Зарубежными исследователями была создана комплексная модель, интегрирующая процессы транспортировки и трансформации в канализационных трубах, и смоделирована для различных сценариев перехода. Важным выводом исследования [13] является то, что уменьшение расхода и повышение концентрации химического потребления кислорода (ХПК) приводят к накоплению отложений и сульфидов в канализационных трубах. Для исследованной канализационной системы при снижении общего суточного расхода на 50 % было обнаружено, что в 30 % труб накапливаются отложения и 30 % труб испытали воздействие из-за присутствия сульфидов в различных состояниях в зависимости от температуры сточных вод. Было установлено, что произведение двух расчетных параметров, диаметра и наклона русла является подходящим показателем способности трубы накапливать отложения [13].

Влияние снижения расходов бытовых сточных вод на инженерные объекты

В настоящее время в системе городской канализации на балансе муниципального предприятия Самары «Самараводоканал» находится 20 канализационных насосных станций производительностью 1 – 36 тыс. м3/ч. Производительность крупнейших главных насосных станций, перекачивающих сточные воды с бассейновых коллекторов на городские очистные канализационные сооружения, составляет:

  • канализационная насосная станция № 13 – 36 тыс. м3/ч;
  • канализационная насосная станция № 6 – 23 тыс. м3/ч;
  • канализационная насосная станция № 6а – 23 тыс. м3/ч.

Городские очистные канализационные сооружения (ГОКС) Самары были запроектированы на очистку почти 1 млн. м3/сут [14], фактический приток на текущий момент колеблется в районе 500 тыс. м3/сут. Но не только ГОКС города не «дозагружены», ранее упомянутая КНС № 6 перекачивает в весенний период примерно 6,2 тыс. м3/ч, а в зимний период и вовсе 4,8 тыс. м3/ч, что составляет 27 и 21 % соответственно от проектной мощности.

Как отмечалось выше, проектная мощность сооружений – 1 млн. м3 стоков в сутки. За период c 1994 по 2006 гг. среднесуточное поступление составило 704,8 тыс. м3/сут [14], за 2008 – 2010 гг. – 551,3 тыс. м3/сут [15].

Согласно данным, представленным в отчете [15], сооружения механической очистки на ГОКС, в состав которых входят песколовки и первичные радиальные отстойники, работают достаточно эффективно для обеспечения допустимых концентраций загрязняющих веществ в осветленной сточной воде перед сооружениями биологической очистки. Однако наблюдаемая эффективность достигается главным образом за счет малых расходов поступающих сточных вод (проектная производительность сооружений, как говорилось выше, – 1 млн. м3/сут, фактический среднесуточный расход сточных вод за 2008 – 2010 гг. составил 551 300 м3/сут) и низких концентраций загрязнений в исходной сточной воде.

Также из отчета следует, что с точки зрения экономической эффективности, определяемой производительностью сооружений и эффектом очистки, существующие сооружения механической очистки работают недостаточно эффективно [15].

Выводы

  1. Снижение водопотребления негативно отразилось на инженерных объектах, таких как трубопроводы, насосные станции, канализационные очистные сооружения, поскольку запроектированы они были на вдвое больший расход сточных вод, чем тот, что поступает в настоящее время. Это привело к заилению в трубопроводах, поскольку не соблюдаются самопромывающиеся скорости, что в свою очередь приводит к уменьшению полезного сечения трубопровода, затруднению движения жидкости, а также образованию сероводорода, метана, аммиака, углекислого газа из выпавшего «осадка» в трубопроводе.
  2. Перекачивание поверхностных сточных вод позволит решить не только проблему заиления трубопроводов, но и снизит антропогенное воздействие на водоем, будет способствовать разбавлению в некоторой степени хозяйственно-бытового стока и увеличению объема поступающих стоков на городские очистные канализационные сооружения.
×

Об авторах

Александр Кузьмич Стрелков

Самарский государственный технический университет

Автор, ответственный за переписку.
Email: a19400209@yandex.ru

Академия строительства и архитектуры

доктор технических наук, профессор, заведующий кафедрой водоснабжения и водоотведения

Россия, 443100, г. Самара, ул. Молодогвардейская, 244

Михаил Владимирович Шувалов

Самарский государственный технический университет

Email: mshuv57@gmail.com

Академия строительства и архитектуры
кандидат технических наук, доцент кафедры водоснабжения и водоотведения, директор Академии строительства и архитектуры

Россия, 443100, г. Самара, ул. Молодогвардейская, 244

Алексей Андреевич Павлухин

Самарский государственный технический университет

Email: a_pavluhin17@mail.ru

Академия строительства и архитектуры
аспирант кафедры водоснабжения и водоотведения

Россия, 443100, г. Самара, ул. Молодогвардейская, 244

Михаил Дмитриевич Черносвитов

Самарский государственный технический университет

Email: mihail_che@mail.ru

Академия строительства и архитектуры
кандидат технических наук, доцент кафедры водоснабжения и водоотведения

Россия, 443100, г. Самара, ул. Молодогвардейская, 244

Список литературы

  1. Эпоян С.М., Лукашенко С.В., Гетманец Н.И. Интенсификация очистки поверхностно-ливневых сточных вод // Motrol. Commission of motorization and energetics in agriculture. 2013, Vol. 15, no. 6, pp. 149−156. Режим доступа: http://journals.pan.pl/Content/91322/mainfile.pdf (дата обращения: 16.05.2022).
  2. Первов А.Г., Матвеев Н.А., Карасев П.Л., Мотовилова Н.Б. Очистка поверхностного стока от нефтепродуктов и СПАВ с использованием систем обратно осмоса // Водоснабжение и санитарная техника. 2013. № 1. С. 36−42.
  3. Продоус О.А., Шлычков Д.И. Методологические подходы к оценке эффективности эксплуатации самотечных сетей водоотведения с отложениями в лотковой части труб // Градостроительство и архитектура. 2022. Т. 12, № 4. С. 34–41. doi: 10.17673/Vestnik.2022.04.5.
  4. Быкова П.Г., Палагин Е.Д., Гриднева М.А., Павлухин А.А. Поверхностные сточные воды г. Самары: влияние сезонных факторов // Водоснабжение и санитарная техника. 2018. № 12. С. 28−34.
  5. Шувалов М.В., Шувалов Р.М. Капитальный ремонт и реконструкция канализационных сетей в Самаре // Градостроительство и архитектура. 2022. Т. 12, № 2. С. 23–28. doi: 10.17673/Vestnik.2022.02.4.
  6. Артёмов. Cамара как историческое поселение. Границы, предмет охраны, максимальная высотность и улица, с которой все начнется 19 июля 2019, 12:27. Режим доступа: https://drugoigorod.ru/historical_settlement-2/ (дата обращения: 29.09.2022).
  7. Гриднева М.А. Совершенствование отведения и очистки поверхностных сточных вод урбанизированных территорий: дис. … канд. техн. наук / СГАСУ. Самара, 2004. 161 с.
  8. Мелехин А.Г., Щукин И.С. Применение бионженерных сооружений для очистки ливневых и талых вод c урбанизированных территорий // Вестник ПНИПУ. Строительство и архитектура. 2012. № 1. С. 122−131. Режим доступа: https://elibrary.ru/download/elibrary_18402873_55466592.pdf (дата обращения: 18.07.2022).
  9. Калинин А.В. Проблемы организации отведения поверхностного стока с территории городского округа Тольятти: монография. Тольятти, 2014. 163 с.
  10. ВОЛГА НЬЮС. Автор – Маша Иванова. «Проект реконструкции сетей дождевой канализации в историческом поселении Самары разработают за 180,5 млн рублей». Режим доступа: https://volga.news/article/639076.html (дата обращения: 01.10.2022).
  11. Мкртчян Т.М., Серпокрылов Н.С. Определение коэффициентов шероховатости и Шези для расчета участков сетей водоотведения в условиях сокращения расходов сточных вод // Инженерный вестник Дона. 2013. Т. 27. № 4. С. 215. Режим доступа: http://www.ivdon.ru/uploads/article/pdf/R_74_mkrtchyan.pdf_1925.pdf (дата обращения 29.11.2022).
  12. Габибов Р.А., Телятникова А.М. Процесс образования сероводорода в канализации и последствия его выделения в окружающую среду // Молодой ученый. 2020. № 21 (311). С. 463−465. Режим доступа: https://moluch.ru/archive/311/70408/ (дата обращения: 29.12.2022).
  13. Penn R., Maurer M. Effects of Transition to Water Efficient Solutions on Existing Centralized Sewer Systems − An Integrated Biophysical Modeling Approach // Water Resour. Res. 2021. Vol. 57, № 9.
  14. Стрелков А.К. Степанов С.В., Кирсанов А.А. Интенсификация процессов биологической очистки на очистных канализационных сооружениях г. Самары // Водоснабжение и санитарная техника. 2006. № 9, ч. 2. С. 30 – 37.
  15. Технический отчёт по теме «Разработка концепции по доведению очищенных сточных вод городских очистных канализационных сооружений г.о. Самара до норм норматива допустимого сброса. Самара, 2011. 144 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема выпусков ливневой канализации в исторической части города Самары [6].

Скачать (600KB)
3. Рис. 2. Гидрограф поверхностного стока c различных водосборных территорий [8]: а – естественная среда; б – небольшие города; в – крупные города

Скачать (24KB)
4. Рис. 3. Вариант реконструкции выпусков дождевой канализации [10]

Скачать (444KB)

© Стрелков А.К., Шувалов М.В., Павлухин А.А., Черносвитов М.Д., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах