Structure and Dynamics of Pinus sibirica Du Tour Forest Stands at the Upper Limit of Their Growth in the Western Part of the Katunsky Range (Altai) under Climate Change

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The forest boundary is characterized by being highly sensitive to climate change. In this regard, monitoring the distribution of forested areas on the southern and northern boundaries of the forest in lowland conditions, as well as the upper and lower boundaries of the forest in mountainous regions, is one of the simplest and most effective methods for studying the response of vegetation to climate change. In the western part of the Katun Range (Central Altai), based on the use of classical dendrochronological methods, the age of 891 Pinus sibirica Du Tour trees growing at different altitudes above sea level was established. Comparison of the altitudinal position of the upper limit of tree vegetation according to topographic maps of 1956 and modern satellite images made it possible to establish the rate of change in forested areas depending on the presence or absence of edaphic restrictions for the successful regeneration of tree species. It is shown that, starting from the second half of the 20th century. There is an intensive expansion of Pinus sibirica, the most common tree species in the study area, into the belt of mountain meadows and tundras. The nature and rate of colonization by woody vegetation vary significantly depending on the exposure of the slope and its hypsometric characteristics. The closest connections were found between the appearance of cedar and climatic indicators of the cold period (temperature and precipitation), this is especially typical for slopes with northern and eastern exposures. It was shown that the expansion of the forest was favored by a general change in climatic conditions in the study area.

Texto integral

Acesso é fechado

Sobre autores

A. Grigoriev

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: grigoriev.a.a@ipae.uran.ru
Rússia, Yekaterinburg

S. Vyukhin

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: grigoriev.a.a@ipae.uran.ru
Rússia, Yekaterinburg

Yu. Shalaumova

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: grigoriev.a.a@ipae.uran.ru
Rússia, Yekaterinburg

D. Balakin

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: grigoriev.a.a@ipae.uran.ru
Rússia, Yekaterinburg

A. Timofeev

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: grigoriev.a.a@ipae.uran.ru
Rússia, Yekaterinburg

A. Gromov

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: grigoriev.a.a@ipae.uran.ru
Rússia, Yekaterinburg

D. Golikov

Botanical Garden of the Ural Branch of the Russian Academy of Sciences

Email: grigoriev.a.a@ipae.uran.ru
Rússia, Yekaterinburg

N. Nizametdinov

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: grigoriev.a.a@ipae.uran.ru
Rússia, Yekaterinburg

P. Moiseev

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: grigoriev.a.a@ipae.uran.ru
Rússia, Yekaterinburg

Bibliografia

  1. Büntgen U., Hellmann L., Tegel W., Normand S., Myers-Smith I., Kirdyanov A.V., Nievergelt D., Schweingruber F.H. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol., 2015, vol. 103, no. 2, pp. 489–501. https://doi.org/10.1111/1365-2745.12361
  2. Cazzolla G.R., Callaghan T., Velichevskaya A., Dudko A., Fabbio L., Battipaglia G., Liang J. Accelerating upward treeline shift in the Altai Mountains under last century climate change. Sci. Rep., 2019, vol. 9, art. 7678. https://doi.org/10.1038/s41598-019-44188-1
  3. Chapin F.S., Sturm M., Serreze M.C., McFadden J.P., Key J.R., Lloyd A.H., McGuire A.D., Rupp T.S., Lynch A.H., Schimel J.P., et al. Role of land-surface changes in arctic summer warming. Science, 2005, vol. 310, no. 5748, pp. 657–660. https://doi.org/10.1126/science.1117368
  4. Danby R.K., Hik D.S. Variability, contingency and rapid change in recent Subarctic alpine tree line dynamics. J. Ecol., 2007, vol. 95, no. 2, pp. 352–363. https://doi.org/10.1111/j.1365-2745.2006.01200.x
  5. Gaisin I.K., Moiseev P.A., Makhmutova I.I., Nizametdinov N.F., Moiseeva O.O. Expansion of tree vegetation in the forest–mountain steppe ecotone on the Southern Urals in relation to changes in climate and habitat moisture. Russ. J. Ecol., 2020, no. 4, pp. 251–264. https://doi.org/10.1134/S1067413620040074
  6. Gorchakovskiy P.L., Shiyatov S.G. Fitoindikatsiya uslovii sredy i prirodnykh protsessov v vysokogor’yakh [Phytoindication of Environmental Conditions and Natural Processes in High Mountain Regions]. Moscow: Nauka Publ., 1985. 208 p.
  7. Grigoriev A.A., Devi N.M., Kukarskikh V.V., V’yukhin S.O., Galimova A.A., Moiseev P.A., Fomin V.V. Structure and dynamics of tree stands at the upper timberline in the western part of the Putorana plateau. Russ. J. Ecol., 2019, no. 4, pp. 243–254. https://doi.org/10.1134/S1067413619040076
  8. Grigoriev A.A., Shalaumova Y.V., Balakin D.S. Current Expansion of Juniperus sibirica Burgsd. to the Mountain Tundras of the Northern Urals. Russ. J. Ecol., 2021, no. 52, pp. 376–382. https://doi.org/10.1134/S1067413621050076
  9. Grigoriev A.A., Shalaumova Y.V., Vyukhin S.O., Balakin D.S., Kukarskikh V.V., Vyukhina A.A., Camarero J.J., Moiseev P.A. Upward treeline shifts in two regions of Subarctic Russia are governed by summer thermal and winter snow conditions. Forests, 2022, vol. 13, no. 2, art. 174. https://doi.org/10.3390/f13020174
  10. Hansson A., Dargusch P., Shulmeister J. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci., 2021, no. 18, pp. 291–306. https://doi.org/10.1007/s11629-020-6221-1
  11. Harsch M.A., Hulme P.E., McGlone M.S., Dunca R.P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett., 2009, no. 12, pp. 1040–1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x
  12. Holtmeier F.-K. Mountain Timberlines: Ecology, Patchiness, and Dynamics. Advanced Global Change Resource. Berlin, Heidelberg: Springer, 2009.
  13. Holtmeier F.K., Broll G. Wind as an ecological agent at treelines in North America, the Alps, and the European subarctic. Phys. Geogr., 2010, vol. 31, no. 3, pp. 203–233. https://doi.org/10.2747/0272-3646.31.3.203
  14. Im S.T., Kharuk V.I. Climate induced changes in Alpine Forest: Tundra ecotone, Siberian arctic mountains. Issled. Zemli Kosmosa, 2013, no. 5, 32 p. (In Russ.). https://doi.org/10.7868/S0205961413040052
  15. IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: CUP, 2022.
  16. Jiao L., Chen K., Liu Х., Qi C., Xue R. Comparison of the response stability of Siberian larch to climate change in the Altai and Tianshan. Ecol. Indic., 2021, vol. 128, art. 107823. https://doi.org/10.1016/j.ecolind.2021.107823
  17. Klinge M., et al. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia. Biogeosci., 2018, vol. 15, no. 5, pp. 1319–1333. https://doi.org/10.5194/bg-15-1319-2018
  18. Körner C. Alpine treelines. Functional Ecology of the Global High Elevation Tree Limits. Berlin: Springer, 2012.
  19. Kullman L., Öberg L. Post-little ice age treeline rise and climatic warming in the Swedish Scandes: A landscape ecological perspective. J. Ecol., 2009, no. 97, pp. 415–429. https://doi.org/10.1111/j.1365-2745.2009.01488.x
  20. Kuyek N.J., Thomas S.C. Trees are larger on south slopes in late-seral conifer stands in northwestern British Columbia. Can. J. For. Res., 2019, vol. 49, no. 11, pp. 1349–1356. https://doi.org/10.1139/cjfr-2019-0089
  21. MacQueen J. Some methods for classification and analysis of multivariate observations. In Proc. 5th Berkeley Symp. on Math. Statistics and Probability. Le Cam L.M., Neyman J., Eds. 1967, pp. 281–297.
  22. Mazepa V.S. Stand density in the last millennium at the upper tree-line ecotone in the Polar Ural Mountains. Can. J. For. Res., 2005, no. 35, pp. 2082–2091. https://doi.org/10.1139/x05-111
  23. Moiseev P.A., Hagedorn F., Balakin D.S., Bubnov M.O., Devi N.M., Kukarskih V.V., Mazepa V.S., Viyukhin S.O., Viyukhina A.A., Grigoriev A.A. Stand biomass at treeline ecotone in Russian subarctic mountains is primarily related to species composition but its dynamics driven by improvement of climatic conditions. Forests, 2022, vol. 13, no. 2, art. 254. https://doi.org/10.3390/f13020254
  24. Narozhniy Y., Zemtsov V. Current state of the Altai glaciers (Russia) and trends over the period of instrumental observations 1952–2008. Ambio, 2011, no. 40, pp. 575–588. https://doi.org/10.1007/s13280-011-0166-0
  25. Paromov V.V., Narozhnyi Y.K., and Shantykova L.N. Estimation of current dynamics and forecast of glaciological characteristics of the Malyi Aktru glacier (Central Altai). Led Sneg, 2018, vol. 58, no. 2, pp. 171–182. (In Russ.). https://doi.org/10.15356/2076-6734-2018-2-171-182
  26. Pauli H., Gottfried M., Dullinger S., et al. Recent plant diversity changes on Europe’s mountain summits. Science, 2012, vol. 336, no. 6079, pp. 353–355. https://doi.org/10.1126/science.1219033
  27. Rossi S., Deslauriers A., Anfodillo T., Carraro V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 2007, no. 152, pp. 1–12. https://doi.org/10.1007/s00442-006-0625-7
  28. Shiyatov S.G. Dinamika drevesnoi i kustarnikovoi rastitel’nosti v gorakh polyarnogo urala pod vliyaniem sovremennykh izmenenii klimata [Dynamics of Woody and Shrubby Vegetation in the Mountains of the Polar Urals under the Influence of Modern Climate Changes]. Yekaterinburg: UrO RAN, 2009. 216 p.
  29. Shiyatov S.G., Vaganov E.A., Kirdyanov A.V., Kruglov V.B., Mazepa V.S, Naurzbaev M.M., Hantemirov R.M. Metody dendrokhronologii: uchebno-metodicheskoe posobie. Ch. 1. Osnovy dendrokhronologii. Sbor i poluchenie drevesno-kol’tsevoi informatsii [Methods of Dendrochronology: Educational and Methodological Manual. Part 1. Fundamentals of Dendrochronology. Collection and Receipt of Tree-ring Information]. Krasnoyarsk: Krasnoyarsk Gos. Univ., 2000.
  30. Shrestha K.B., Hofgaard A., Vandvik V. Recent treeline dynamics are similar between dry and mesic areas of Nepal, central Himalaya. J. Plant Ecol., 2015, vol. 8, no. 4, pp. 347–358. https://doi.org/10.1093/jpe/rtu035
  31. Sturm M., Schimel J., Michaelson G., Welker J.M., Oberbauer S.F., Liston G.E., Fahnestock J., Romanovsky V.E. Winter biological processes could help convert arctic tundra to shrubland. BioScience, 2005, vol. 55, no. 1, pp. 17–26. https://doi.org/10.1641/0006-3568(2005)055[0017: WBPCHC]2.0.CO;2
  32. Taynik A.V., Barinov V.V., Oidupaa O.Ch., Myglan V.S., Reinig F., Buntgen U. Growth coherency and climate sensitivity of Larix sibirica at the upper treeline in the Russian Altai Sayan Mountains. Dendrochronologia, 2016, no. 39, pp. 10–16. https://doi.org/10.1016/j.dendro.2015.12.003
  33. Timoshok E.E., Timoshok E.N., Nikolaeva S.A., Savchuk D.A., Filimonova E.O., Skorokhodov S.N., Bocharov A.Yu. Monitoring of high-altitude terrestrial ecosystems in the Altai Mountains. IOP Conf. Ser.: Earth Environ. Sci., 2016, vol. 48, art. 012008. https://doi.org/10.1088/1755-1315/48/1/012008
  34. Tretii otsenochnyi doklad ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii [Third Assessment Report on Climate Change and its Consequences on the Territory of the Russian Federation]. Katsov V.M., Ed. St. Petersburg: Naukoemkie tehnologii Publ., 2022.
  35. Vaganov E.A., Shijatov S.G., Mazepa V.S. Dendroklimaticheskie issledovaniya v Uralo-Sibirskoi Subarktike [Dendroclimatic Studies in the Ural-Siberian Subarctic]. Novosibirsk: Nauka Publ., 1996.
  36. Volkov I.V., Zemtsov V.A., Erofeev A.A., Babenko A.S., Volkova A.I., Callaghan T.V. The dynamic land-cover of the Altai Mountains: Perspectives based on past and current environmental and biodiversity changes. Ambio, 2021, no. 50, pp. 1991–2008. https://doi.org/10.1007/s13280-021-01605-y
  37. Ziaco E., Biondi F., Rossi S., Deslauriers A. Climatic influences on wood anatomy and tree-ring Features of great basin conifers at a new mountain Observatory. Appl. Plant Sci., 2014, vol. 2, no. 10, art. 1400054. https://doi.org/10.3732/apps.1400054

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Location of the study area on the Kholodny Belok Ridge, Altai (blue triangles indicate meteorological stations, red circles - altitude profiles)

Baixar (1MB)
3. Fig. 2. Map-scheme of changes in the altitude and spatial position of the upper boundary of sparse forests (UBF) in the eastern part of the Kholodny Belok Ridge in 1960 and 2020

Baixar (636KB)
4. Fig. 3. Distribution of the number of Siberian cedar trees by periods of its appearance on the laid altitude profiles

Baixar (428KB)
5. Fig. 4. Time series of anomalies of mean air temperature and total precipitation at Ust-Koksa (a, c) and Kara-Tyurek (b, d) meteorological stations. The dotted line indicates the linear trend

Baixar (388KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024