METHYLATION AND AMINATION OF 4H-[1,2,3]TRIAZOLO[4,5-c][1,2,5]OXADIAZOLE SALTS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The methylation and the amination of 4H-[1,2,3]triazolo[4,5-c][1,2,5]oxadiazole salts (K+, Ag+, Et3NH+, DBUH+) were studied for the first time. It is shown that two methylated products are formed in the reaction. In the case of K- and Et3N-salts, 4- and 5-methylated isomers are formed in equal proportions, and in the case of Ag- and DBU-salts, the main product is the 4-isomer. It was found that the main product of amination of both 4H-[1,2,3]triazolo[4,5-c][1,2,5]oxadiazole K- and DBU-salts with O-(p-tolylsulfonyl)hydroxylamine is 4-azido-3-amino-1,2,5-oxadiazole. The mechanism of its formation as a result of rearrangement of 5-amino-[1,2,3]triazolo[4,5-c][1,2,5]oxadiazole is proposed.

Sobre autores

S. Balabanova

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

A. Voronin

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

A. Churakov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

M. Klenov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

V. Tartakovsky

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: voronin@ioc.ac.ru
Russian Federation, 119991, Moscow

Bibliografia

  1. Gao H., Zhang Q., Shreeve J.M. // J. Mat. Chem. A. 2020. V. 8. № 8. P. 4193–4216. https://doi.org/10.1039/C9TA12704F
  2. Zelenov V.P., Lobanova A.A., Lyukshenko N.I., Sysolyatin S.V., Kalashnikov A.I. // Russ. Chem. Bull. 2008. V. 57. № 7. P. 1384–1389. https://doi.org/10.1007/s11172-008-0180-y
  3. Li X., Wang B., Li Y., Li H., Zhou C., Zhang Y., Lian P. // Chin J. Energy Mater. 2013. V. 21. P. 717–720. https://doi.org/10.3969/j.issn.1006-9941.2013.06.005
  4. Voronin A.A., Fedyanin I.V., Churakov, A.M., Pivkina A.N., Muravyev N.V., Strelenko Y.A., Klenov M.S., Lempert D.B., Tartakovsky V.A. // ACS Appl. Energ. Mat. 2020. V. 3. № 9. P. 9401–9407. https://doi.org/10.1021/acsaem.0c01769
  5. Voronin A.A., Balabanova S.P., Fedyanin I.V., Chura-kov A.M., Pivkina A.N., Strelenko Yu.A., Klenov M.S., Tartakovsky V.A. // Molecules. 2022. V. 27. № 19. P. 6287. https://doi.org/10.3390/molecules27196287
  6. Kaihoh T., Itoh T., Yamaguchi K., Ohsawa A. // J. Chem. Soc., Perkin Trans. 1. 1991. V. 8. P. 2045–2048. https://doi.org/10.1039/P19910002045
  7. Campbell C.D., Rees C.W. // J. Chem. Soc. C. 1969. V. 5. P. 742–747. https://doi.org/10.1039/J39690000742
  8. Knight D.W., Little P.B. // J. Chem. Soc., Perkin Trans. 1. 2000. V. 15. P. 2343–2355. https://doi.org/10.1039/B001834L
  9. Larina L.I., Milata V. // Magn. Reson. Chem. 2009. V. 47. P. 142–148. https://doi.org/10.1002/mrc.2366
  10. Klapötke T.M., Piercey D.G., Stierstorfer J. // Dalton Trans. 2012. V. 41. P. 9451–9459. https://doi.org/10.1039/C2DT30684K
  11. Rakitin O.A., Zalesova O.A., Kulikov A.S., Makhova N.N., Godovikova T.I., Khmel’nitskii L.I. // Russ. Chem. Bull. 1993. V. 42. № 11. P. 1865–1870. https://doi.org/10.1007/BF00699005

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (18KB)
3.

Baixar (32KB)
4.

Baixar (17KB)
5.

Baixar (2KB)
6.

Baixar (21KB)
7.

Baixar (18KB)
8.

Baixar (31KB)

Declaração de direitos autorais © С.П. Балабанова, А.А. Воронин, А.М. Чураков, М.С. Кленов, В.А. Тартаковский, 2023