SIDE GROUNDED CONDUCTORS DIPPED IN A SUBSTRATE OF A MICROSTRIP LINE, AS A TOOL OF LINE CHARACTERISTICS CONTROL


如何引用文章

全文:

详细

Electrical design of on-board radio-electronic equipment is an important stage in spacecraft design. High charac- teristics of printed circuit boards (PCBs) are essential for miniature units that have reliability, speed, stability of elec- trophysical parameters, electromagnetic compatibility. In order to do that, new design and technological solutions are necessary, in particular transmission lines with stable characteristics of per-unit-length delay (τ) and wave impedance (Z). One of the main lines, realized on a PCB is a microstrip line (MSL). In multi-layer PCBs it is often used with poly- gons. However, their influence on the stability of characteristics is investigated insufficiently. The purpose of the work is to investigate the dependence of τ and Z of MSL on the distance between the side grounded conductors as they are dipped in a substrate. In the TALGAT software we built a geometric model of the line cross-section and calculated (using the method of moments) the matrices (3*3) of per-unit-length coefficients of electrostatic induction taking into account the dielectric as well as ignoring it. We calculated the values for the change of distance between side conductors (s), dipped in a sub- strate, for different values of the height of the side conductors (h1). We revealed that for large values of s (unlike small ones), approaching of the side conductors to the air-substrate boundary does not increase but it decreases the value of τ. When s = 0.38 mm, the change of the value of h1 in the whole range almost doesn’t change the values of τ and, therefore zero sensitivity of τ to changes of h1 is possible. Thus we can obtain the required Z value in the range from 48 to 59 Ohms by changing the value of h1. These results are obtained for particular values of the parameters of the line. However it is easy to obtain similar dependencies for other values of parameters. The results can be used to design transmission lines with stable delay un- der control of the impedance value.

全文:

Introduction. Electrical design of on-board radio- electronic equipment is an important stage in the space- craft design [1]. High characteristics of printed circuit boards (PCBs) are important for miniature units [2; 3] that have reliability [4], speed, stability of electrophysical pa- rameters [5], electromagnetic compatibility [6]. In order to do that, new design and technological solutions are necessary, in particular transmission lines with stable characteristics of per-unit-length delay (τ) and wave im- pedance (Z). Thus the research of these characteristics is relevant [7-10]. One of the main lines, realized on PCB is MSL. Vari- ous modifications of MSL are the most interesting, for example, suspended and inverted strip lines which make it possible to obtain zero sensitivity of the per-unit-length delay and wave impedance to the change in the thickness of dielectric layers [11]. A similar pattern was found in MSL coated with a grounded conductor, shielded MSL [12] and MSL with side grounded conductors placed above [13]. There is a detailed analysis of modifications and variances in such a line and its varieties. Multilayer PCBs use a variety of MSL, for example, MSL with polygons on different layers that allows to obtain a stable value of the per-unit-length delay [14]. Meanwhile, it is useful to study the characteristics of MSL with side con- ductors grounded only on one layer located near the boundary of two environments. The purpose of the work is to investigate the depend- ence of τ and Z of MSL on the distance between the side grounded conductors as they are dipped in a substrate. To achieve the objective, we investigated the structure of MSL with side conductors dipped in the substrate (fig. 1). We chose the following cross-sectional parame- ters (they are close to typical): the width of the signal conductor is w = 0.3 mm, the thickness of the signal and side grounded conductors is t = 18 µm, the width of the side conductors is w1 = 1 mm, the thickness of the dielec- tric substrate is h = 1 mm, the relative permittivity of the substrate is εr = 4.5. w1 Line modeling. In the TALGAT [15] software we built the geometric model of the line cross-section and calculated (using the method of moments) the matrices (3*3) of per-unit-length coefficients of electrostatic induction taking into account the dielectric as well as ignoring it. From the matrices we took the values (hereinafter C and С0) of the diagonal element corresponding to the sig- nal conductor and calculated the values of τ and Z (v0 is the speed of light in vacuum): τ = (C/C0)0.5 /v0, Z = 1/(v0(CC0)0.5). We calculated the values for change of distance be- tween the side conductors s, dipped in a substrate, for the height of the side conductors h1 = 0.1-0.9 mm (fig. 2). Fig. 2 shows that when s increases, the value of τ de- creases smoothly, and Z increases. At small values of h1, the changes of τ and Z are small, but the growth of h1 leads to an increase in the value of τ and a decrease in the value of Z, and at small values of s the changes of τ and Z are more significant. Approaching of the side conductors to the air- substrate boundary has a special effect on the characteris- tics being studied. Therefore, we performed simulation with a smaller step at the air-substrate boundary: at h1 = 0.8; 0.82; 0.84; 0.86; 0.88; 0.9 mm (fig. 3). The analysis of fig. 3 shows a similar behavior of dependen- cies, but it reveals its specificity as well. It is expressed in the amplification of the influence of the side conductors when they approach the air-substrate boundary for small values of s. When s = 0.1 mm, the value of τ increases from 5.56 to 5.82 ns/m. We noticed that for large values of s, approaching of the side conductors to the air- substrate boundary does not increase but it decreases the values of τ. When s = 0.6 mm this decrease is maximal and is from 5.33 ns/m to 5.29 ns/m. When s = 0.38 mm, the change of the value of h1 in the whole range almost doesn’t change the values of τ and, therefore zero sensi- tivity of τ to changes of h1 is possible. Thus we can ob- tain the required Z value in the range from 48 to 59 Ohms by changing the value of h1. w t s w1 h1 h er Fig. 1. Cross-section of MSL with side grounded conductors, dipped in a substrate Рис. 1. Поперечное сечение МПЛ с боковыми заземленными проводниками, углубленными в подложку a b Fig. 2. Dependences of τ (a) and Z (b) on s at h1 = 0.1 (à); 0.2 (ð); 0.3 (∆); 0.4 (×); 0.5 (ð); 0.6 (○); 0.7 (+); 0.8 (-); 0.9(-) mm Рис. 2. Зависимости t (а) и Z (б) от s при h1 = 0,1 (à); 0,2 (ð); 0,3 (∆); 0,4 (×); 0,5 (ð); 0,6 (○); 0,7 (+); 0,8 (-); 0,9(-) мм a b Fig. 3. Dependences of (a) and Z (b) on s at h1 = 0.8 (à); 0.82 (∆); 0.84 (ð); 0.86 (+); 0.88 (-); 0.9 (ð) mm Рис. 3. Зависимости t (а) и Z (б) от s при h1 = 0,8 (à); 0,82 (∆); 0,84 (ð); 0,86 (+); 0,88 (-); 0,9 (ð) мм Conclusion. We modeled MSL with side grounded conductors dipped in a substrate. We calculated the de- pendence of the per-unit-length delay and the wave im- pedance on the distance between the grounded conductors when the depth changes. We found out that zero sensitiv- ity of per-unit-length delay to depth changes is possible while obtaining the required wave impedance. These re- sults are obtained for the particular values of line parame- ters. However it is easy to obtain similar dependencies for other values of parameters. The results can be used to design transmission lines with stable characteristics.
×

作者简介

I. Sagiyeva

Tomsk State University of Control Systems and Radioelectronics

Email: indira_sagieva@mail.ru
40, Lenina Av., Tomsk, 634050, Russian Federation

T. Gazizov

Tomsk State University of Control Systems and Radioelectronics

40, Lenina Av., Tomsk, 634050, Russian Federation

参考

  1. Исследование воздействия электромагнитного излучения на космический аппарат с негерметичным приборным отсеком / С. Г. Кочура [и др.] // Техноло- гии электромагнитной совместимости. 2017. № 3(62). С. 3-10.
  2. Газизов Т. Р., Заболоцкий А. М., Орлов П. Е. Влияние длины и количества витков на задержку микрополосковой линии // Инфокоммуникационные технологии. 2014. Т. 13, № 4. С. 93-96.
  3. Распространение импульса в меандровой линии с неоднородным диэлектрическим заполнением без искажений его формы перекрестными наводками / Р. С. Суровцев [и др.] // Доклады ТУСУРа. 2014. № 4(34). С. 34-38.
  4. Orlov P., Gazizov T., Zabolotsky A. Comparative electromagnetic and quasi-static simulations of a short- pulse propagation along microstrip meander delay lines with design constraints // Journal of ELECTRICAL ENGINEERING. 2016. Vol. 67, no. 5. Р. 387-389. doi: 10.1515/jee-2016-0056.
  5. Газизов Р. Р., Заболоцкий А. М., Газизов Т. Т. Исследование максимума напряжения сверхкороткого импульса в микрополосковой меандровой линии при изменении ее геометрических параметров // Техноло- гии электромагнитной совместимости. 2016. № 3(58). С. 11-17.
  6. Суровцев Р. С., Газизов Т. Р. Оценка целостно- сти сигналов в печатных платах системы автономной навигации космического аппарата [Электронный ресурс] // Труды МАИ. 2015. № 83. URL: https://www.mai.ru/science/trudy/published.php?ID=62204 (дата обращения: 5.10.2015).
  7. Hamood M. K. Line thickness for various charac- teristic impedance of microstrip line // Tikrit Journal of Pure Science. 2013. Vol. 18, No. 3. P. 140-144.
  8. Akhunov R. R., Kuksenko S. P., Gazizov T. R. Acceleration of Multiple Iterative Solution of Linear Algebraic Systems in Computing the Capacitance of a Microstrip Line in Wide Ranges of Its Sizes // Journal of mathematical sciences. 2015. Vol. 207, № 5. P. 686-692.
  9. Surovtsev R. S., Kuksenko S. P., Gazizov T. R. Analytic Evaluation of the Computational Costs for Solv- ing Systems of Linear Algebraic Equations in Multiple Computing of the Capacitance Matrix in a Range of the Dielectric Permittivity of Dielectrics // Journal of mathe- matical sciences, 2015. Vol. 207, № 5. P. 795-802.
  10. Gazizov T. R., Kuksenko S. P., Akhunov R. R. Acceleration of Multiple Solution of Linear Systems for Analyses of Microstrip Structures // International journal of mathematical models and methods in applied sciences. 2015. Vol. 9. P. 721-726.
  11. Газизов Т. Р. Характеристики подвешенной и обращенной полосковых линий // Известия вузов. Фи- зика. 1996. Т. 39, № 2. С. 126-128.
  12. Сагиева И. Исследование характеристик эк- ранированной микрополосковой линии // Известия вузов. Физика. 2017. Т. 60, № 12/2. С. 103-107.
  13. Сагиева И. Е. Моделирование характеристик микрополосковой линии с боковыми заземленными проводниками сверху // Электронные средства и сис- темы управления : материалы XIII Междунар. науч.- практ. конф., посвященной 55-летию ТУСУРа (29 нояб.-1 дек. 2017, г. Томск). Томск, 2017. Ч. 2. С. 19-20.
  14. Gazizov T. R., Salov V. K., Kuksenko S. P. Stable delay of microstrip line with side grounded conductors // Wireless Communications and Mobile Computing. 2017. Vol. 2017, Article ID 1965739. 5 p. doi: 10.1155/2017/1965739.
  15. Новые возможности системы моделирова- ния электромагнитной совместимости TALGAT / C. П. Куксенко [и др.] // Докл. Том. гос. ун-та систем управления и радиоэлектроники. 2015. № 2(36). C. 45-50.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Sagiyeva I.Y., Gazizov T.R., 2018

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##