INTERACTION OF MAGNETIC AND DIELECTRIC SUBSYSTES IN A BISMUTH NODYMIC FERRITE-GRANATE


Cite item

Full Text

Abstract

Bismuth-substituted ferrite garnets possess magneto-optical (MO) properties and are used as spatial light modula- tors and indicators. The paper studies the influence of magnetic and electric fields on the structural characteristics of thin epitaxial films of bismuth-neodymium ferrite garnet (Bi: NIG) deposited on glass and gallium gadolinium garnet (GGG) substrates. Dynamic properties of polarization, relaxation in a magnetic and electric field are considered, which is an important task for getting a deep insight into the mechanisms of electromagnetic phenomena in solids. Dependence of the magnetostriction coefficient on the magnetic field and dependence of a relative change in the length of the film on the electric field at different temperatures are obtained. A change in the sign of magnetostriction constants with respect to temperature was found. The electric polarization in a periodically applied electric field of 400 V / cm with a frequency of 10 MHz is determined for various magnetic field orientations of 12 kOe and in the absence of a magnetic field. Anisotropy of polarization in a magnetic field and a functional dependence of the polariza- tion relaxation on time are found. These materials can be used as sensors of the magnetic field in a spacecraft.

Full Text

Introduction. Multiferroics attract interest both from the practical, and from the fundamental point of research of interaction mechanisms between magnetic and electric subsystems [1-5]. Unique combination of magnetic, optical and mag- neto-optical properties makes bismuth ferrite garnets an attractive material both for theoretical researches and for technological applications. These materials can be used as sensors of the magnetic field in spacecrafts and in writer- reader devices resistant to radioactive effects. Bismuth-substituted ferrite garnets possess magneto- optical (MO) properties and are used as spatial modula- tors of light, indicators and also other MO of devices in the field of visible light [6-9]. It is established that the increase in replacement of bismuth leads to an increase of MO effects. Thus, for completely substituted Bi3Fe5O12 (BIG) the Faraday spinning effect reaches 25 °/micron for 530 nanometers of the light wavelength. Thereof the gar- nets substituted with a large amount of bismuth become an attractive material for MO applications. Magnetic ani- sotropy of films depends on a substrate, the constant of film grating has 0.2 % change when filming on a Gd3Ga5O12 substrate in directions (111) and (100) [10]. Also, in Bi:NIG films Seebeck spin effect was found [11] which can be used in new thermoelectric devices applying the spin current generated by a temperature gradient. In Bi3Fe5O12 applying the method of ferromagnetic resonance with the electric field modulation linear mag- neto-electric effect with maximum under 450 К was found, mechanism of which has not been determined, however, it has a direct connection with bismuth ions presence [12]. In this regard, the research of interrelation between magnetic and electric properties, having been carried out earlier in a number of connections, [13-16] is relevant for bismuth ferrite garnets as well. Materials and research methods. Epitaxial films Nd1Bi2Fe5O12 (450 nm)/Nd2Bi1 Fe4Ga1O12 (90 nm) were examined on the glass substrate and Nd0.5Bi2.5Fe5O12 (450 nm) - on single-crystalline sub- strate GGG, grown in crystallographic direction (111). Films were produced applying the method of metal- organic compound decomposition of solution (MOD) [17] at the Technological University of Nagaoka (Japan). The process of film formation consisted of the following stages: applying solution on the metal-organic compounds blended so as to meet Stoichiometry requirements to a film structure on the centrifuge at 3000 rot/min within 60 sec. → drying under 100 °С within 10 minutes → pre- burning under 450 °С within 10 minutes in the open air → repeating the processes from putting metal-organic solution on the centrifuge before preliminary burning so as to obtain the required film thickness → burning at 650°С for 1 hour in the open air. As a buffer layer on a non-directional glass substrate the film Nd2Bi1Fe4Ga1O12 was formed in advance with 90 nm thickness. Schematic diagram of the process MOD is shown in fig. 1. Values of constants electro- and magnet- strictions were defined as a relative film deformation under the influence of electric and magnetic fields dL = (R (H;E) - R (H = 0; E = 0)) / R (H = 0; E = 0)), where R (H;E) - strain gage resistance in electric or magnetic field, R (H = 0; E = 0) - strain gage resistance without external fields. The ZFLA-3-11 strain gage was used. Polarization was defined as a pyroelectric charge (Q) divided into the area of contact (A) P = Q/A. Charge was measured apply- ing the Keithley 6517B electrometer. Results and discussions. Interaction of a magnetic and elastic subsystem can be implemented as a result of the single-ion mechanism, spin-orbit interaction and de- formation dependence of exchange on the distance. The latter mechanism is found in the field of magnetic phase transition. Film magnetostriction constants on glass and GGG depending on the external magnetic field directed perpendicular to a film are measured. In fig. 2 and 3 tem- perature dependences of magnetostriction coefficient in magnetic field of 12 kOe for two films applied on differ- ent substrates are presented. For a film on glass in the range of room temperatures the nonlinear dependence λ is observed (N). Lower than 310 K a magnetostriction constant in magnetic field of H = 12 kOe changes the sign. At a temperature of 200 K the maximum film compression is observed. When cool- ing from 200 K the constant magnetostriction value de- creases and at 80K falls dramatically. A small anisotropy of magnetostriction is observed, so that film lengthening in the magnetic field, perpendicularly applied to a film, exceeds the film lengthening in the direction of the field. Under the film rotation relative magnetic field film lengthening reaches a maximum at coal 24 °. Lower than 280 K a minimum and a maximum of magnetostric- tion is reached at 30 ° respectively and perpendicular to the film. The film on GGG substrate at T > 300 K linearly ex- pands in magnetic field and contracts below room tem- perature. With the temperature decrease magnetostriction changes the sign, passes through a minimum at T = 160 K and similarly to glass practically does not depend on tem- perature at further cooling (fig. 3). Change of magnetic field orientation hardly influences the magnetostriction constant. The film electrostriction value Bi: NIGNA on a glass substrate was measured in electric field up to 400 V / cm. The film slightly expands in the external electric field at T = 80 K. Above T = 120 K the film contracts not line- arly and reaches the maximum size of compression in fields of 300-400 V/cm at Т > 200 K. At temperatures above room there are two competing mechanisms: the first is connected with the film contraction, the second - with expansion. Magnetostriction in this area of tempera- tures changes the sign. Film deformation does not depend on the electric field sign. Electrostriction under absolute value increases at temperature rise, passes through a maximum at 200 K and decreases under a further tem- perature rise up to 360 K. Polarization of Bi:NIG films is measured in the elec- tric field of 400 V/cm amplitude with a frequency of 10 MHz in the form of a rectangular impulse under various magnetic field orientations. In fig. 4 and 5 dependences of polarization on time are represented at different temperatures for both films. Over time electric polarization of the film on glass smoothly grows in external electric field. At switching off the field, polarization falls abruptly and changes the sign from positive value to negative below room temperature. At temperatures over 300 K residual polarization coin- cides with external electric field by sign (fig. 4). The time dependence of film polarization on garnet qualitatively differs from films on glass (fig. 5). Under switched off electric field residual polarization remains positive and smoothly increases over time. Observed effects are explained by charged defects on the film-substrate interface which are compensated by the shift of oxygen ions along certain directions in crystal. External electric field removes degeneration in the direc- tion of polarization, leads to turning of the local dipolar moments across the field and to the formation of residual polarization. In films on glass there are two interfaces and double electric layer is formed causing the polarization sign change after switching off the field. In films on glass and on garnets the anisotropy of elec- tric polarization in magnetic field which is caused by magnetoelectric effect is observed. Fig. 1. Sketch flowchart MOD Рис. 1. Эскизная схема технологического процесса MOD Fig. 2. Dependence of the magnetostriction coefficient on temperature in Bi: NIG on a glass substrate Рис. 2. Зависимость коэффициента магнитострикции от температуры в Bi:NIG на подложке из стекла Fig. 3. Dependence of the magnetostriction coefficient on temperature in Bi: NIG on a GGG substrate Рис. 3. Зависимость коэффициента магнитострикции от температуры в Bi:NIG на подложке из GGG 0,024 Подпись: P, mC/cm20,000 -0,024 -0,048 -0,072 0,00 0 50 100 t, s 150 200 0,022 Подпись: P, mC/cm20,000 -0,022 -0,044 -0,066 0,165 0 50 100 t, s 150 200 Подпись: P, mC/cm2Подпись: P, mC/cm2-0,03 0,110 -0,06 -0,09 0 50 100 150 200 t, s 0,055 0,000 -0,055 0 50 100 150 200 t, s Fig. 4. Polarization of Bi: NIG film on glass over time: a - at temperatures t = 120º KH = 0 (1), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles φ = 90º (2), φ = 180º (3), φ = 360º (4); b - at temperatures t = 200º KH = 0 (1, 6), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles φ = 0º (2), φ = 90º (3), φ = 180º ( 4), φ = 360º (5); c - at temperatures t = 280º KH = 0 (1, 6), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles φ = 0º (2), φ = 90º (3), φ = 180º ( 4), φ = 360º (5); d - at temperatures t = 360º K H = 0 (3), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles φ = 90º (1), φ = 360º (2) Рис. 4. Поляризация пленки Bi:NIG на стекле от времени: а - при температурах t = 120º KH = 0 (1), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах φ = 90º (2), φ = 180º (3), φ = 360º (4); b - при температурах t = 200º KH = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах φ = 0º (2), φ = 90º (3), φ = 180º (4), φ = 360º (5); с - при температурах t = 280º KH = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах φ = 0º (2), φ = 90º (3), φ = 180º (4), φ = 360º (5); d - при температурах t = 360º KH = 0 (3), в магнит- ных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах φ = 90º (1), φ = 360º (2) 0,180 Подпись: P, mC/cm20,135 0,090 0,045 0,140 Подпись: P, mC/cm20,105 0,070 0,035 0,000 2,4 Подпись: P, mC/cm21,8 1,2 0,6 0,0 0 50 100 150 200 t, s 0,000 0,075 Подпись: P, mC/cm20,050 0,025 0,000 -0,025 -0,050 0 50 100 150 200 t, s 0 50 100 150 200 t, s 0 50 100 150 200 t, s Fig. 5. Polarization of Bi: NIG film on GGG over time: а - at temperatures t = 120º KH = 0 (1, 6), in magnetic fields H = 12 kO when the magnetic field is oriented relative to the surface normal at angles φ = 0º (2), φ = 90º (3), φ = 180º ( 4), φ = 360º (5); b - at temperatures t = 160º KH = 0 (1, 6), in magnetic fields H = 12 kO when the magnetic field is oriented relative to the surface normal at angles φ = 0º (2), φ = 90º (3), φ = 180º ( 4), φ = 360º (5); c - at temperatures t = 280º KH = 0 (1, 6), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles φ = 0º (2), φ = 90º (3), φ = 180º ( 4), φ = 360º (5); d - at temperatures t = 320º KH = 0 (1, 6), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles φ = 0º (2), φ = 90º (3), φ = 180º ( 4), φ = 360º (5) Рис. 5. Поляризация пленки Bi:NIG на GGG от времени: а - при температурах t = 120º KH = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах φ = 0º (2), φ = 90º (3), φ = 180º (4), φ = 360º (5); b - при температурах t = 160º KH = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах φ = 0º (2), φ = 90º (3), φ = 180º (4), φ = 360º (5); с - при температурах t = 280º KH = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах φ = 0º (2), φ = 90º (3), φ = 180º (4), φ = 360º (5); d - при температурах t = 320º KH = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах φ = 0º (2), φ = 90º (3), φ = 180º (4), φ = 360º (5) Magnetic field orientation angle is defined relative to a film surface normal. Dependence of polarization relaxa- tion on time cannot be described by one functional de- pendence like an exponent, a logarithm or a power func- tion. Change of electric polarization in magnetic field, under switching on and off electric field of E = 400 V/cm, reaches 40 % and depends on the direction of magnetic field relative to the film Conclusion. Contraction of films below room tem- perature has been found in magnetic and electric fields. Magnetostriction sign change under temperature rise in films on glass and on garnet has been revealed. Resid- ual electric polarization after external electric field switching off has been observed. The anisotropy of polarization in external magnetic field has been found which indicates magnetoelectric interaction in bismuth ferrite films.
×

About the authors

A. N. Masyugin

Reshetnev Siberian State University of Science and Technology

31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation

O. B. Fisenko

Reshetnev Siberian State University of Science and Technology

Email: fisenko_o@mail.ru
31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation

U. I. Rybina

Reshetnev Siberian State University of Science and Technology

31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation

G. Yu. Filippson

Reshetnev Siberian State University of Science and Technology

31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation

References

  1. Диэлектрические и электрические свойства полиморфного пиростаната висмута Bi2Sn2O7 / Л. В. Удод, С. С. Аплеснин, М. Н. Ситников [и др.] // Физика твердого тела. 2014. Т. 56, вып. 7. C. 1267-1271.
  2. Аплеснин С. С., Ситников М. Н. Магни- тотранспортные эффекты в парамагнитном состоянии в GdxMn1-xS // Письма в ЖЭТФ. 2014. Т. 100, вып. 2. C. 104-110.
  3. Диэлектрические свойства тонких пленок Bi1-xLaxFeO3 / С. С. Аплеснин, А. А. Остапенко, В. В. Кретинин [и др.] // Вестник СибГАУ. 2014. № 3 (55). C. 192-197.
  4. Bi2(Sn0.95Cr0.05)2O7 : Structure, IRspecture, and di- electric properties / S. S. Aplesnin, L.V. Udod, M. N. Sitnikov [et al.] // Ceramics International. 2016. Vol. 42. P. 5177-5183.
  5. Аплеснин С. С., Ситников М. Н. Магнитоемко- стный эффект в GdxMn1-xS // Физика твердого тела. 2016. Т. 58, вып. 6. C. 1112-1117.
  6. Magnetic properties of bismuth-substituted neo- dymium iron garnet films on Gd3Ga5O12(100) substrates determined by ferromagnetic resonance measurements / J. Yamakita, G. Lou, M. Nishikawa [et at.] // Japanese Journal of Applied Physics. 2018. Vol. 57. P. 09TC01. doi: 10.7567/JJAP.57.09TC01.
  7. Polar and longitudinal magneto-optical spectros- copy of bismuth substituted yttrium iron garnet films grown by pulsed laser deposition / M. Veis, E. Lišková, R. Antoš [et al.] // Thin Solid Films. 2011. Vol. 519, Iss. 22. P. 8041-8046. doi: 10.1016/j.tsf.2011.06.007.
  8. Chern M.-Y., Liaw J.-S. Study of BixY3 xFe5O12 Thin Films Grown by Pulsed Laser Deposition // Japanese Journal of Applied Physics. 1997. Vol. 36, Part 1, No. 3A. P. 1049-1053. doi: 10.1143/JJAP.36.1049.
  9. Аплеснин С. С., Харьков А. М. Магнитные и динамические свойства твердых растворов SmxMn1-xS // Физика твердого тела. 2003. Т. 59, вып. 1. С. 69-74.
  10. Sasaki M., Lou G., Liu Q. Nd0.5Bi2.5Fe5- yGayO12 thin films on Gd3Ga5O12 substrates prepared by metal- organic decomposition // Japanese Journal of Applied Physics. 2016. Vol. 55. P. 055501.
  11. Longitudinal Spin Seebeck Effect in Bi- substituted Neodymium Iron Garnet on Gadolinium Gal- lium Garnet Substrate Prepared by MOD Method / H. Asada, A. Kuwahara, K. Sueyasu [et al.] // Physics Procedia. 2015. Vol. 75. P. 932-938. doi: 10.1016/j.phpro.2015.12.128.
  12. Bismuth iron garnet Bi3Fe5O12: A room tempera- ture magnetoelectric material / E. Popova, A. Shengelaya, D. Daraselia [et al.] // Appl. Phys. Lett. 2017. Vol. 110. P. 142404.
  13. Magnetoelectric and magnetoresistiveproperties of the CexMn1-xSsemiconductors / S. S. Aplesnin, M. N. Sitnikov [et al.] // Physica Status Solidi (B). 2016. Vol. 253, Iss. 9. P. 1771-1781.
  14. Magnetic and Magnetoresistive Properties of GdxMn1- xSeSelenides / S. S. Aplesnin, M. N. Sitnikov [et al.] // Bulletin of the Russian Academy of Sciences: Physics. 2016. Vol. 80, No. 11. P. 1306-1309.
  15. Магнитоемкость тонких пленок GdxBi1-xFeO3 / C. C. Аплеснин, В. В. Кретинин, А. М. Панасевич [и др.] // Физика твердого тела. 2017. №. 4. С. 653-659, doi: 10.21883/FTT.2017.04.44265.094.
  16. Магнитные, Диэлектрические и транспортные свойства пиростаната висмута Bi2(Sn0.9Mn0.1)2O7 / С. С. Аплеснин, Л. В. Удод, М. Н. Ситников [и др.] // Физика твердого тела. 2017. Т. 59, вып. 11. С. 2246-2251.
  17. Characterization of epitaxial (Y,Bi)3(Fe,Ga)5O12 thin films grown by metal-organic decomposition method / T. Ishibashi, A. Mizusawa, M. Nagai [et al.] // Japanese Journal of Applied Physics. 2005. Vol. 97, Iss.1. P. 013516. doi: 10.1063/1.1827339.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Masyugin A.N., Fisenko O.B., Rybina U.I., Filippson G.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies