ВЫБОР ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ СПИЦЫ ЗОНТИЧНОЙ АНТЕННЫ ДЛЯ ОБЕСПЕЧЕНИЯ МАКСИМАЛЬНОЙ ИЗГИБНОЙ ЖЕСТКОСТИ


Цитировать

Полный текст

Аннотация

Рассмотрена оптимизация геометрии поперечного сечения тонкостенных спиц крупногабаритных разво- рачиваемых спутниковых параболических антенн зонтичного типа с радиальными спицами-ребрами. В подоб- ной конструкции спицы должны обладать максимальной изгибной жесткостью при минимальной массе. Спицы с постоянной толщиной стенки как в отдельном сечении, так и по длине не являются оптимальными для достижения максимальной жесткости при заданной массе, так как имеют одинаковую жесткость при изгибе в любом направлении. Предлагается изменить форму поперечного сечения спицы за счет использования участков различной толщины. Это позволит увеличить изгибную жесткость спицы в направлении, перпендикулярном поверхности антенны при сохранении заданной массы конструкции. В областях сечений, максимально удалённых друг от друга, в плоскости изгиба толщина будет ступенчато увеличена, в оставшейся части сечения - уменьшена. Основной целью данной работы явилось получение аналитических зависимостей для оценки изгибной же- сткости поперечного сечения спицы зонтичной антенны со ступенчатым изменением ее толщины. Формулы были получены в рамках балочной теории изгиба. Полученные аналитические зависимости были проверены численным моделированием в универсальной программной системе конечно-элементного анализа Ansys. Вери- фикация полученных результатов численным моделированием показала хорошую сходимость с теоретически- ми выводами. Полученные в статье формулы позволяют дать практические рекомендации по конструированию больших разворачиваемых космических антенн с улучшенными параметрами, а именно, максимальной жесткостью при минимальной массе конструкции.

Полный текст

Introduction. Large deployable parabolic antennas are widely used in satellite communication systems. Um- brella-type constructions with radial spokes-ribs con- nected at one end to the base are the most widespread among such systems (fig. 1). Spokes are the main supporting elements of an um- brella-type antenna. They must have bending stiffness sufficient to open the antenna and to tense the netting both during the orbital operation and during ground testing of the structure. There are several approaches to the design of the spokes of the umbrella-type antenna [1-14]. Wind- ing is the most technologically feasible method for manu- facturing a thin-walled spoke. In the process of winding a strip of unidirectional composite material is laid layer by layer on a cylindrical mandrel at the angle ±j to the lon- gitudinal axis (fig. 2). With a large number of thin, alter- nating layers with angles +φ and -φ, the structure of a spoke wall can be considered homogeneous and orthotropic. The main types of spoke deformation are bending in the zoy plane and bending in the zox plane. Bending in the zoy plane occurs when the spoke is loaded with forces that arise during the process of membrane tension. The mem- brane tension is the main load case for the umbrella- type antenna's spoke. Therefore, the stiffness of the spoke bending in the zoy plane should be greater than the stiff- ness of the spoke bending in the zox plane. Cross section of constant thickness is not optimal for achieving maxi- mum stiffness with a given mass. Optimization of the cross-section geometric pa- rameters of the umbrella-type antenna’s spoke. The authors propose to change the shape of the spoke cross- section by using sections of different thicknesses to in- crease the bending stiffness of the thin-walled spoke of the umbrella-type antenna while maintaining the specified design mass (fig. 3). An important circumstance is the fact that such a design is technologically feasible. We connect the longitudinal axis of the spoke passing through the centers of the cross sections with the coordi- nate z counted from the base (fig. 2) and assign the cross- section of the spoke to the coordinate system xoy (fig. 4). To maintain the specified mass of the structure, it is nec- essary to ensure the equality of the cross-sectional areas of the spokes in question (fig. 4, 5), which can be achieved by using the cross-section shown in fig 4, 5. Formulas are obtained that allow estimating the bending stiffness of the spoke cross section in the case when the thickness varies stepwise (fig. 5). Let us define the bending stiffness of the cross section of the spoke. Calculation of a thin-walled rod with a closed cross-sectional contour is carried out on the basis of the hypotheses of the beam theory, according to which the cross section is not deformed and turns like a hard disk when bending. а b Fig. 1. An umbrella-type antenna with spokes with a circular cross section: a - an antenna in the deployed position; b - the start position of an antenna Рис. 1. Зонтичная антенна со спицами с круглым поперечным сечением: а - в развернутом положении; б - в стартовом положении Fig. 2. A cantilever thin walled spoke with a round cross-section Рис. 2. Консольная тонкостенная спица с круглым поперечным сечением Fig. 3. An isometric view of the spoke with variable thickness Рис. 3. Общий вид спицы с переменным сечением Fig. 4. A thin-walled round spoke with constant thickness in the cross section Рис. 4. Спица с гладким поперечным сечением Fig. 5. A thin-walled round spoke with variable thickness in the cross section Рис. 5. Спица с переменным поперечным сечением Within the framework of the beam theory [15], the bending stiffness of the cross-section in the planes zoy and zox are defined as follows: After some transformations (5) we obtain the follow- ing expression: D = A R3(t (b + sinb ) + t (p - (b + sinb ))) . (6) D = B y2ds , D = B x2ds . (1) x 11 1 1 1 2 1 1 x °ò 11 y °ò 11 Taking into account the equality of the cross-sectional Here s is the contour coordinate, which is calculated from the formula s = Rβ, respectively ds = Rdβ. The value В11 denotes the stiffness of the spoke wall when stretched or compressed in the axial direction. areas of the two spokes under consideration, we obtain expressions for the bending stiffness of a spoke with a smooth cross-section: 11 2 1 D = A R3t (p + b (a -1)) , (7) 11 2 1 1 x = R sin b , y = R cosb . (2) and a cross-section with variable thickness: Substituting (2) into (1), we obtain the following ex- pressions: Dx where α = t1/t2. = A R3t ((a -1)(b + sin b ) + p) , (8) Dx = °ò B R2 cos2 bRdb = R3 °ò B11 cos2 bdb , The bending stiffness relations can be written in the 11 Dy = °ò B R2 sin2 bdbRdb = R3 °ò B11 sin2 bdb . (3) following form: D sin b 11 The rigidity of a spoke with a smooth cross-section will be expressed with the following form: h = x = 1+ D 1 b + p 1 a -1 . (9) 11 11 D = pB R3 = pA tR3 . (4) For a spoke with a complex cross-section (fig. 5), the expression for the bending stiffness of the cross section in the zoy plane takes the form: The results of the calculations are shown in the graph (fig. 6) for different thickness ratios α. Here α1 = 1.5, α2 = 2.0, α3 = 3.0, α4 = 4.0, α5 = 5.0. As it can be seen from the graph, the maximum stiff- ness is achieved when the ratio of the thicknesses of the Dx = 2R æ b1 ç 2 3 2 ç A11t1 ò cos bdb + A11t2 b1 +b2 2 ò cos2bdb + spoke with the variable cross-section is 5 and the angle β1 is equal to 62°. Modal analysis of the spokes by the finite element ç 0 b1 è 2 b1 +b +b1 ö (5) method was carried out (fig. 7) to verify the results. The spokes are made of CFRP (Carbon Fiber Reinforced + A11t1 where β2 = π - β1. 2 2 2 ò b1 +b2 2 cos2bdb÷, ÷ ÷ ø Polymer) with the following characteristics: modulus of elasticity is 100 hPa, Poisson’s ratio is 0.3, and density is 1500 kg / m3. The internal diameter of the spoke is 200 mm, the length is 6 m, the thickness of the smooth cross-section is t = 2 mm. η β1 Fig. 6. The dependence of the stiffness parameter on the angle β1 at different thickness ratios Рис. 6. Зависимость жесткостного параметра от угла β1 при разных соотношениях толщин Fig. 7. The modal analysis of a spoke with a variable cross-section Рис. 7. Модальный анализ спицы с переменным поперечным сечением Taking into account the equality of the areas of the two cross-sections, we obtain the parameters for a spoke with a variable cross-section: the angle β1 is 60°, the thickness t1 = 4 mm and t2 = 1 mm. With these geometric parameters, the masses of the spokes are prac- tically equal. The first frequency of a spoke with a smooth cross- section is 8.69 Hz, and that of a spoke with a variable cross-section is 10.64 Hz. As a result of the calculation it can be seen that the stiffness of a spoke with a variable cross-section significantly increased in comparison with a spoke with a smooth cross-section. The ratio of stiffness obtained numerically is 1.47. The conclusion. Substituting the calculated parame- ters of the spokes into expression (9), we obtain η1 =1.41. Verification of the results obtained showed good conver- gence with theoretical conclusions. Thus, the formulas obtained make it possible to esti- mate the bending stiffness of the cross-section of the um- brella-type antenna spoke when its thickness varies step- wise and give practical recommendations for the design of large expandable space antennas with improved parameters, namely, maximum stiffness with a minimum mass of the structure.
×

Об авторах

А. В. Лопатин

Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева

Российская Федерация, 660037, г. Красноярск, просп. им. газ. «Красноярский рабочий», 31

М. А. Рутковская

Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева

Email: marina_a_b@mail.ru
Российская Федерация, 660037, г. Красноярск, просп. им. газ. «Красноярский рабочий», 31

Список литературы

  1. Akira M. In-orbit deployment performance of large satellite antennas // J. Spacecraft and Rockets. 1996. Vol. 33, № 2. С. 222-227.
  2. Barho R. Investigations into deployment complica- tions of the ERS-1 SAR antenna // 5th European Space Mech. and Tribol. Symposium (Noordwijk, 28-30 Oct., 1992). Paris, 1993. С. 61-64.
  3. Freeland R. E. Survey of deployable antenna con- cepts // Proceedings of the large space antenna systems technology workshop. NASA CP-2269. Pt. 1. 1983.
  4. Gantes C. J., Konitopoulou E. Geometric design of arbitrarily curved bi-stable deployable arches with discrete joint size // International Journal of Solids and Structures. 2004. № 41. С. 5517-5540.
  5. Imbriale W. Spaceborne Antennas for Planetary Exploration. NJ. : John Wiley and Sons, 2006. 592 c.
  6. Method for making a reflector of a satellite broad- casting receiving parabolic antenna : Patent № 093054. USA / Kashichi H. ; Kyowa Electric and Chemical Co. Ltd. 03.03.1992.
  7. Development of a precision large deployable antenna for the space VLBI / O. Kunito [at al.] // 14th International Communication Satellite Systems Conference and Exhibit (Washington D. C., March 22-24, 1992). 1992. С. 1552-1559.
  8. Lai C.-Y., Pellegrino S. Deployable membrane re- flectors with offset configuration // AIAA Pap. 1999. № 1477. С. 1-9.
  9. Misawa M. Deployment reliability prediction for a large satellite antennas driven by spring mechanisms // J. Spacecraft and Rockets. 1994. Vol. 31, № 5. С. 878-882.
  10. Grid structures. Patent № 5364491. USA / Oachi T., Pyle R. J. ; Lockheed Missiles and Space Co. 15.11.1994.
  11. Roederer A. G., Rahmat-Samii Y. Unfurable satellite antennas: a review // Annales des Telecommunications. 1989. № 44. С. 475-488.
  12. Pellegrino S. Deployable membrane reflectors // In Proc. 2nd World Engineering Congress (July 22-25, 2002, Sarawak, Malaysia). С. 1-9.
  13. Tan L. T., Soykasap O., Pellegrino S. Design & manufacture of stiffened spring-back reflector demon- strator // In Proc. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (April 18-21, 2005, Austin, Texas). AIAA-2048.
  14. Лопатин А. В., Рутковская М. А. Моделиро- вание сетчатой спицы зонтичной параболической антенны // Наука. Промышленность. Оборона : мате- риалы Рос. науч.-техн. конф. Новосибирск, 2003. С. 13-14.
  15. Vasiliev V. V. Mechanics of Composite Struc- tures. Taylor & Francis, 1993.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Лопатин А.В., Рутковская М.А., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах