Product characteristics forecasting model with support vectore machines


如何引用文章

全文:

详细

Numerical models with support vector machines are used for forecasting material's properties depending on their production parameters. The paper includes practical forecasting results.

作者简介

I Kovalev

Siberian State Airspace University named after academician M. F. Reshetnev, Russia, Krasnoyarsk

Siberian State Airspace University named after academician M. F. Reshetnev, Russia, Krasnoyarsk

N Y urkov

Siberian Federal University, Russia, Krasnoyarsk

Siberian Federal University, Russia, Krasnoyarsk

参考

  1. Yurkov, N. S. Application of support vector machines to multiple nonlinear regression problem (at the example of mechanical properties of aluminium alloys) / N. S. Yurkov // Control systems and information technologies. 2009. No 1.2 (35). P . 307-312.
  2. Gulyayev,A. P. Metallography /A. P. Gulyayev. 6th ed. M. : Metallurgiya, 1986. 544 p. (in Russian)
  3. DIN EN 515-1993.Aluminium and aluminium alloys; wrought products; temper designations; DIN-Mittei-lungen von 1996. Nr. 12. S. A 971 (Tabelle 4 , S. 11 2. Spalte gendert).
  4. Data analysis methods and models: OLAP and Data Mining/A.A.Barsegyan, M. S.Kupriyanov,V .V . Stepanenko, I. I. Kholod. SPb. : BHV-Peterburg, 2004. 336 p.
  5. Kecman, V. Support Vector Machine Basics. School of engineering report 616 / Vojislav Kecman. Auckland : The University ofAuckland, 2004. 54 p.
  6. Vapnik, V. N. Estimation of dependences based on empirical data / V. N. Vapnik. M. : Nauka, 1979. 499 p. (in Russian)
  7. Witten, Ian H. Data Mining: PracticalMachine Learning Tools and Techniques / Ian H. Witten, Eibe Frank. 2nd ed. San Francisco : Morgan Kaufmann Publishers, 2005. 525 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kovalev I., Y urkov N.S., 2009

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可