INFLUENCE OF IMPURITIES ON RATE OF DIFFUSION OF LITHIUMIN CRYSTAL SILICON


Citar

Texto integral

Resumo

Influence of impurity atoms (Al, B, C, Ge, P) on rate of diffusion of lithium in crystal silicon is investigated by DFT
calculations. For that potential barrier values for lithium atom passage between potential minimum nearby impurity
atom have been calculated. It is shown the presence of Al or Ge atoms near lithium atom decreases the potential barrier
value at 0,02-0,07 eV, but the presence of C or B atoms increases the barrier value at 0,14-0,17 eV. And the presence
of P atoms does not influence on the potential barrier value. The calculated lithium diffusion rates show that injection
of Al or Ge atoms into silicon increase the lithium diffusion rate at ~4 times at 300 K.

Bibliografia

  1. Kasavajjula U., Wang C. S., Appleby A. J. Nanoand bulk-silicon-based insertion anodes for lithium-ion secondary cells // J. Power Sources. Vol. 163. 2007. P. 1003.
  2. Yang J., Winter M., Besenhard J. O. Small particle size multiphase Li-alloy anodes for lithium-ionbatteries // Solid State Ionics. Vol. 90. 1996. P. 281.
  3. Huggins R. A. Lithium alloy negative electrodes formed from convertible oxides // Solid State Ionics. Vol. 113-115. 1998. P. 57.
  4. Winter M., Besenhard J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites // Electrochim. Acta. Vol. 45. 1999. P. 31.
  5. Huggins R. A. Lithium alloy negative electrodes // J. Power Sources. Vol. 81-82. 1999. P. 13.
  6. Lithium Batteries Science and Technology : ed. by G.-A. Nazri and G. Pistoia / Kluwer Academic. N. Y., 2004. P. 113.
  7. Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes / Cui Li-Feng, R. Ruffo, C. K. Chan et al. // NanoLetters. Vol. 9 (1). 2009. P. 491.
  8. High-performance lithium battery anodes using silicon nanowires / C. K. Chan, H. Peng, Liu Gao et al. // Nature nanotechnology. Vol. 3. 2008. P. 31.
  9. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature / H. Li, X. Huang, L. Chen et al. // Solid State Ionics. Vol. 135. 2000. P. 181.
  10. Maranchi J. P., Hepp A. F., Kumta P. N. High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries // Electrochem. Solid-State Lett. Vol. 6. 2003. P. A198.
  11. Obrovac M. N., Christensen L. Structural Changes in Silicon Anodes during Lithium Insertion/Extraction // Electrochem. Solid-State Lett. Vol. 7. 2004. P. A93.
  12. Electrochemically-driven solid-state amorphization in lithium-metal anodes / P. Limthongkul, Y. I. Jang, N. J. Dudney et al. // J. Power Sources. Vol. 119-121. 2003. P. 604.
  13. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage / P. Limthongkul, Y. I. Jang, N. J. Dudney et al. // Acta Mater. Vol. 51. 2003. P. 1103.
  14. Wen C. J., Huggins R. A. Chemical diffusion in intermediate phases in the lithium-silicon system // J. Solid State Chem. Vol. 37. 1981. P. 271.
  15. Marel C. V. D., Vinke G. J. B., Lugt W. V. D. The phase diagram of the system lithium-silicon // Solid State Commun. Vol. 54. 1985. P. 917.
  16. Nesper R., Schnering H. G. Li21Si5, a Zintl phase as well as a Hume-Rothery phase // J. Solid State Chem. Vol. 70. 1987. P. 48.
  17. Structure and properties of Li14Si6/Li/2.33/Si/, the violet phase in the lithium-silicon system / H.-G. V. Schnering, R. Nesper, J. Curda, K.-F. Tebbe // Z. Metallkunde. Vol. 71. 1980. P. 357.
  18. Li12Si7, a Compound Having a Trigonal Planar Si4 Cluster and Planar Si5 Rings / H. G. Schnering, R. Nesper, J. Curda et al. // Angew. Chem. Int. Ed. Engl. Vol. 19. 1980. P. 1033.
  19. Evers J., Oehlinger G., Sextl G. High-Pressure Synthesis of LiSi: Three-Dimensional Network of Three- Bonded Si-Ions // Angew. Chem. Int. Ed. Engl. Vol. 32. 1993. P. 1442-1444.
  20. Lithium monosilicide (LiSi), a low-dimensional silicon-based material prepared by high pressure synthesis: NMR and vibrational spectroscopy and electrical properties characterization / L. A. Stearns, J. Gryko, J. Diefenbacher et al. // J. Solid State Chem. Vol. 173. 2003. P. 251.
  21. Crystal and electronic structure of Li15Si4 / Y. Kubota, M. Escano, H. Nakanishi, H. Kasai // J. Appl. Phys. Vol. 102. 2007.
  22. Атабаев Н. Г., Матчанов Н. А., Бахранов Э. Н. Низкотемпературная диффузия лития в твердые растворы кремний-германий // ФТТ. 2001. Т. 43. С. 2040-2041.
  23. Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects // Phys. Rev. Vol. 140. 1965. P. 1133.
  24. Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. Vol. 77. 1996. P. 3865-3868.
  25. Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals // Phys. Rev. B. Vol. 47. № 1. 1993. P. 558-561.
  26. Kresse G., Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium // Phys. Rev. B. Vol. 49. № 20. 1994. P. 14251- 4269.
  27. Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set // Computer Material Science. № 6. 1996. Р. 15.
  28. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B. Vol. 54. 1996.
  29. Vanderbilt D. Soft self-consistent pseudopotentials in generalized eigenvalue formalism // Phys. Rev. B. Vol. 41. 1990. P. 7892.
  30. Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations // Phys. Rev. B. Vol. 13. 1976. P. 5188-5192.
  31. Henkelman G., Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points // J. Chem. Phys. Vol. 113. 2000. P. 9978-9985.
  32. Vineyard G. V. Frequency factors and isotope effects in solid state rate processes // J. Phys. Chem. Solids. Vol. 3. 1957. P. 121-127.
  33. Fedorov A. S., Sorokin P. B., Kuzubov A. A. Ab initio study of hydrogen chemical adsorption on platinum surface/carbon nanotube join system // Phys. Stat. Sol. B. Vol. 245. 2008. P. 1546-1551.
  34. Pell E. M. Diffusion of Li in Si at High T and the Isotope Effect // Phys. Rev. Vol. 119. № 3. 1960. P. 1014-1021.
  35. Pell E. M. Diffusion Rate of Li in Si at Low Temperature // Phys. Rev. Vol. 119. № 4. 1960. P. 1222-1225.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Popov Z.I., Fedorov A.S., Kuzubov A.A., Kozhevnikova T.A., Popov Z.I., Fedorov A.S., Kuzubov A.A., Kojevnikova T.A., 2011

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies