Magnetic characteristics of iron nanoclusters

封面

如何引用文章

详细

The study of the nanocrystalline state, which significantly changes most of the physical characteristics of substances, is very relevant. Of great practical interest are the works devoted to the study of the magnetic characteristics of nanocrystals of ferromagnetic substances. It has already been shown that the size of iron nanocrystals significantly affects the magnitude of their magnetization. Nevertheless, an adequate model of the structure of nanocrystalline formations consisting of a different number of iron atoms, which allows us to describe the experimentally detected changes in the magnetic characteristics, has not yet been presented.

In this paper, we analyze nanocrystalline iron clusters that are different in configuration and number of their constituent atoms. Spatial models of clusters are constructed using a three-dimensional modeling program, and the coordinates of individual atoms in the cluster are determined. The proposed structures of nanocrystals are based on tetrahedrally densely packed cluster assemblies of iron atoms. The electron state density spectra were constructed for the proposed clusters. For this purpose, the theory of the electron density functional was used, the calculation was carried out by the method of scattered waves in accordance with the band theory of crystals.

It is shown that the appearance of magnetization in tetrahedral densely packed cluster formations is associated with the excited electronic states of the atoms located on the surface of the nanocluster. Excited atoms have an increased electron density, that is, electrons are able to transition to states with higher energy, approaching the Fermi energy. In this case, the Stoner condition necessary for the occurrence of magnetization is fulfilled. The configurations of electrons with spin up and down differ, which is why uncompensated magnetic moments appear. It is confirmed that the proposed models of iron nanoclusters satisfactorily correspond to the known experimental data.

作者简介

Lyudmila Kveglis

Siberian Federal University

编辑信件的主要联系方式.
Email: kveglis@list.ru

Dr. Sc., Professor; Department of Materials Science and Technology of Materials Processing, Polytechnic Institute

俄罗斯联邦, 79, Svobodny Av., Krasnoyarsk, 660041

Ivan Makarov

Siberian Federal University

Email: kveglis@list.ru

Student; Department of Materials Science and Technology of Materials Processing of the Polytechnic Institute

俄罗斯联邦, 79, Svobodny Av., Krasnoyarsk, 660041

Fyodor Noskov

Siberian Federal University

Email: yesoono@yandex.ru

Dr. Sc., Professor; Department of Materials Science and Technology of Materials Processing of the Polytechnic Institute

俄罗斯联邦, 79, Svobodny Av., Krasnoyarsk, 660041

Rinat Nasibullin

Tomsk State University

Email: kveglis@list.ru

post-graduate student of the Department of Optics

俄罗斯联邦, 36, Lenin Av., Tomsk, 634050

Alexander Nyavro

Tomsk State University

Email: kveglis@list.ru

Cand. Sc., Associate Professor of the Department of Optics

俄罗斯联邦, 36, Lenin Av., Tomsk, 634050

Viktor Cherepanov

Tomsk State University

Email: kveglis@list.ru

Dr. Sc., Professor of the Department of Optics

俄罗斯联邦, 36, Lenin Av., Tomsk, 634050

Alexander Olekhnovich

Tomsk State University

Email: kveglis@list.ru

student of the Department of Optics

俄罗斯联邦, 36, Lenin Av., Tomsk, 634050

Dmitry Saprykin

East Kazakhstan University named after S. Amanzholov

Email: kveglis@list.ru

student of the Department of Physics

哈萨克斯坦, 55, Kazakhstan St., Ust-Kamenogorsk, 070004

参考

  1. Mir materialov i tekhnologiy. Nanomaterialy. Nanotekhnologii. Nanosistemnaya tekhnika: mirovye dostizheniya za 2005 g. [The world of materials and technologies. Nanomaterials. Nanotechnology. Nanosystem technology: world achievements in 2005: collection of articles] ed. P. P. Maltsev. Moscow, Tekhnosfera Publ., 2006, 149 p.
  2. Billas I. M. L., Chatelain A., Walt A. H., Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters. Science. 1994, Vol. 265, P. 5179. 10.1126/science.265.5179.1682.
  3. Sundaresan A., Rao C. N. R. Ferromagnetism as a universal feature of inorganic nanoparticles. Nano Today. 2009, No. 4. doi: 10.1016/j.nantod.2008.10.002.
  4. Venkatesan M., Fitzgerald C. B., Coey J. M. D. Nature. 2004. Vol. 430, P. 630.
  5. Hong N. H., Sakai J., Poirot N., Brize V. Phys. Rev. 2006. No. B 73. P. 132404.
  6. Bul’yonkov N. A., Tytik D. L. [Modular design of icosahedral metal clusters]. Izv. AN: Ser Chemical. 2001, No. 1, P. 1–19 (In Russ.).
  7. Kveglis L. I., Noskov F. M., Volochaev M. N., Nyavro A. V., Filarowski A. Magnetic Properties of Nickel-Titanium Alloy during Martensitic Transformations under Plastic and Elastic Deformation. Symmetry. 2021, No. 13(4), P. 665. https://doi.org/10.3390/sym13040665.
  8. Trushin Yu. V. Fizicheskie osnovy materialovedeniya. T. 3. [Physical foundations of materials science. Volume 3]. SPb., Izd-vo Akadem. un-ta Publ., 2015, 356 p.
  9. Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964. No. B. 136, P. 864. https://doi.org/10.1103/PhysRev.136.B864.
  10. Nyavro A. V. Evolyutsiya elektronnykh sostoyaniy: atom – molekula – klaster – kristall. [Evolution of Electronic States: atom – molecule – cluster – crystal]. Tomsk, Izdat. dom Tomskogo gos. un-ta Publ., 2013, 268 p.
  11. Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Wentzcovitch R. M., Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter. 2009, P. 21–39. 10.1088/0953-8984/21/39/395502.
  12. Kraposhin V. S., Talis A. L., Demina E. D., Zaitsev A. I. [Crystal-geometric mechanism of spinel and manganese sulfide intergrowth into a complex non-metallic inclusion]. MiTOM. 2015, P. 4. (In Russ.).
  13. Frank F. C., Kasper J. S. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystall. 1959. Vol. 1, P. 483–499.
  14. Kveglis L. I., Abylkalykova R. B., Noskov F. M., Arhipkin V. G., Musikhin V. A., Cherepanov V. N., Niavro A. V. Local electron structure and magnetization in β-Fe86Mn13C Superlattices and Microstructures. 2009. Vol. 46, No. 1–2, P. 114–120.
  15. Lipscomb W. N. Framework rearrangement in boranes and carboranes. Science. 1966, Vol. 153(3734), P. 373-8. doi: 10.1126/science.153.3734.373.
  16. Bakir M., Jasiuk I. Novel Metal-Carbon Nanomaterials: A Review On Covetics. Advanced Materials Letters. 2017, No. 8, P. 884–890. 10.5185/amlett.2017.1598.
  17. Tikadzumi S. Fizika ferromagnetizma. Magnitnye kharakteristiki i prakticheskie primeneniya [Physics of ferromagnetism. Magnetic characteristics and practical applications ]. Moscow, Mir Publ., 1987, 419 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kveglis L.I., Makarov I.N., Noskov F.M., Nasibullin R.T., Nyavro A.V., Cherepanov V.N., Olekhnovich A.I., Saprykin D.N., 2021

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可