Characteristics of low thrust liquid-propellant rocket engines testing process

Cover Page

Cite item

Abstract

Liquid-propellant rocket engines of low thrust are the main type of rocket engines for control systems of space aircrafts. The thrusters are able to work either in continuous or impulse regime, which is one of their main characteristics. The suggestion about engines` reliability should come from the results of tests which create real or greatly approximated to the real conditions.

The development process of thrusters takes into a great account the problems of bench testing methodic, technical equipment of test benches for creating the closest possible conditions to the space and the using of diagnosis methods and instruments for different physical researches and dimensions.

The ground test effectiveness depends on the level of imitation of real conditions and the level of attention to all working factors, that influence the credibility of reliability parameter estimation during the development. One of the most important questions in terms of testing effectiveness is the question of testing result accuracy and credibility. The testing process of thrusters mainly goes under the requested conditions of vacuum, created in pressure chambers.

To increase the effectiveness of imitation of the space conditions the paper suggests the using of pressure chamber, equipped with the tube screen with the circulating liquid nitrogen under required mass flow ratio. The impulse working regime creates instability of propellant moving in pipelines. The paper considers the methods of providing the dynamically similar characteristics of supply systems in propulsion systems as well as conformity of hydraulic, inert and wave characteristics of supply pipelines.

About the authors

Vladimir P. Nazarov

Reshetnev Siberian State University of Science and Technology

Author for correspondence.
Email: nazarov@sibsau.ru

Cand. Sc., Professor, Head of the Department of Aircraft Engines

Russian Federation, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037

Valery Y. Piunov

Isaev Chemical engineering Design Bureau

Email: piunovdm@gmail.com

Cand. Sc., Deputy General Director

Russian Federation, 12, Bogomolova St., Koroljov, Moscow region, 141070

Vladimir G. Yatsunenko

Reshetnev Siberian State University of Science and Technology

Email: vyatsunenko@mail.ru

Cand. Sc., Professor of the Department of Aircraft Engines

Russian Federation, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037

Dmitry A. Savchin

Reshetnev Siberian State University of Science and Technology

Email: savchin.dim@yandex.ru

Post-graduate student

Russian Federation, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037

References

  1. Grishin S. D., Zakharov Yu. A., Odelevskiy V. K. Proektirovanie kosmicheskikh apparatov s dvigatelyami maloy tyagi [Design of aircrafts with liquid propellant rocket engines of low thrust]. Moscow, Mashinostroenie Publ., 2003, 236 p.
  2. Kraev M. V., Krushenko G. G., Kaychuk L. N., Yatsunenko V. G. Razrabotka osnovnykh sistem stenda ognevykh ispytaniy zhidkostnykh raketnykh dvigateley maloy tyagi [Design of main systems of thruster test facility]. Krasnoyarsk, IVM SO RAN Publ., 2008, 47 p.
  3. Vorob’ev A. G., Vorob’ev S. S. [Methods of thruster chamber heat state calculation in a steady impulse regime]. Vestnik SibGAU. 2016, Vol. 17, No. 4, P. 945–955. (In Russ.)
  4. Lebedinskiy E. V. Rabochie protsessy v zhidkostnom raketnom dvigatele i ikh modelirovanie pod red. A. S. Koroteeva [Working processes in liquid propellant rocket engines and their modelling edited by A. S. Koroteev]. Moscow, Mashinostroenie Publ., 2008, 512 p.
  5. NIIMash [Research Institute of Mechanical Engineering]. (In Russ.) Available at: http://niimashspace.ru/index.php/produce/rkt/31-propulsion (accessed: 10.11.2020).
  6. Novosti kosmonavtiki [Space news]. (In Russ.) Available at: http://novosti-kosmonavtiki.ru/ forum/forum9/topic11175/ (accessed: 12.08.2020).
  7. Produktsiya Turaevskogo MKB “Soyuz” [The products of the Turaev MKB Soyuz]. (In Russ.) Available at: http://www.tmkb-soyuz.ru/ (accessed: 15.09.2020).
  8. Produktsiya FGUP KB KhM imeni A. M. Isaeva [Products of the Federal State Unitary Enterprise Isayev Design Bureau] (In Russ.). Available at: http://www.kbhmisaeva.ru/main.phpid=31 (accessed: 21.08.2020).
  9. Shustov I. G. Dvigateli 1944–2000: aviatsionnye, raketnye, morskie, nazemnye [Engines 1944– 2000: aircraft, rocket, naval, land-based engines]. Moscow, AKS-Konversalt Publ., 2000, 406 p.
  10. Biryukov V. I., Nazarov V. P., Tsarapkin R. A. [Estimating algorithm of working process stability reserve in liquid-propellant rocket engines chambers]. Sibirskiy zhurnal nauki i tekhnologiy. 2017, Vol. 18, No. 3, P. 558–566. (In Russ.)
  11. AMBR Engine for Science Missions [NASA in space propulsion technology (ISPT) program]. Available at: nts.nasa.giv/archive/nasa/ casi.nts.nasa…/20090001339.pdf (accessed: 05.09.2020).
  12. Shibanov A. A., Pikalov V. P., Saydov S. S. Metody fizicheskogo modelirovaniya vysokochastotnoy neustoychivosti rabochego protsessa v zhidkostnykh raketnykh dvigatelyakh pod red. d-ra tekhn. nauk K. P. Denisova. [Methods of physical modelling of high-frequency instability in working processes of liquidpropellant rocket engines]. Moscow, Mashinostroenie Publ., Polet Publ, 2013, 512 p.
  13. Kraev M. V., Yatsunenko V. G. [Measurements during firing tests of low thrust liquid propellant rocket engines]. Vestnik SibGAU. 2004, Vol. 5, P. 167–172. (In Russ.)
  14. Yatsunenko V. G., Nazarov V. P., Kolomentsev A. I. Stendovye ispytaniya zhidkostnykh raketnykh dvigateley [Bench testing of liquid propellant rocket engines]. Krasnoyarsk, Siberian St. Aerospace Univ. Publ., Moscow Aviation Inst. Publ., 2016, 248 p.
  15. Glikman B. F. Nestatsionarnye techeniya v pnevmogidravlicheskikh tsepyakh [Non-stationary flows in hydraulic and pneumatic circuits]. Moscow, Mashinostroenie Publ., 1979, 125 p.
  16. Biryukov V. I., Mosolov S. V. Dinamika gazovykh traktov zhidkostnykh raketnykh dvigateley [Dynamics of gas paths of liquid-propellant rocket engines]. Moscow, Moscow Aviation Inst. Publ., 2016, 168 p.
  17. Lestrade J., Verberne O., Khimeche G. et. al. Experimental Demonstration of the Vacuum Specific Impulse of a Hybrid Rocket Engine. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, 2014.
  18. Yatsunenko V. G. Optimizatsiya protsessa konstruktorskoy otrabotki ZhRD maloy tyagi pri ognevykh ispytaniyakh [Optimisation of the design process for liquid-propellant low thrust rocket engines firing tests]. Krasnoyarsk, Siberian St. Aerospace Univ., 2006, 124 p.
  19. Panchurin K. A. [Solution of the Navier-Stokes equations for the particular case of nonstationary laminar flow in pipes]. Trudy Leningradskogo Instituta vodnogo transporta. 1963, Vol. 45, P. 49–51. (In Russ.)
  20. Fayzulaev D. F., Navruzov K., Fattaev F. N. [Pulsating flow of a viscous incompressible fluid in a circular branch pipe] DAN Uzbek SSR. 1981, No. 10, P. 20–22. (In Russ.)
  21. Popov D. N. [Features of non-stationary flows in pipes]. Izvestiya Vysshikh Uchebnykh Zavedenii, Mashinostroenie. 1970, No. 7, P. 78–82. (In Russ.)
  22. Jeong Soo Kim, Jeong Park, Sungcho Kim. Test and Performance Evaluation of Small Liquidmonopropellant Rocket Engines. 42nd Joint Propulsion Conference & Exhibit. Sacramento, 2006.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Nazarov V.P., Piunov V.Y., Yatsunenko V.G., Savchin D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies