Structural-phase state and properties of hypereutectic silumin treated with a pulsed electron beam

Cover Page

Cite item

Abstract

Hypereutectic silumin composition are promising modern materials of wide application (mechanical engineering, aviation, instrumentation, medicine, etc.). Disadvantages of hypereutectic silumin, significantly limiting their scope, are pores and shells, a large (about 100 µm) inclusions of the second phase lamellar and needle-like. As a result of the studies carried out in this work, the possibility of forming structural-phase states in the surface layer of silumin, the size and morphology of which can purposefully change in the range from tens of micrometers to tens of nanometers, is demonstrated. The irradiation modes that allow more than 5 times to increase the microhardness (15 J/cm2, 150 µs, 0.3 s–1, 5 imp.) and more than 3 times to increase the wear resistance (50 J/cm2, 150 µs, 0.3 s–1, 5 imp.) of silumin were revealed.

About the authors

Yurii F. Ivanov

Institute of High Current Electronics (IHCE) of the Siberian Branch of the Russian Academy of Sciences

Email: yufi55@mail.ru

Dr. Sc., assistant professor, senior scientist, main scientific of IHCE RAS

Russian Federation, 2/3, Akademicheskiy Av., Tomsk, 634055

Sergey P. Eresko

Reshetnev Siberian State University of Science and Technology

Author for correspondence.
Email: eresko07@mail.ru

Dr. Sc., Honored Inventor, professor, Siberian State University of Science and Technology

Russian Federation, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037

Anatoly A. Klopotov

Tomsk State University of Architecture and Building

Email: klopotovaa@tsuab.ru

Dr. Sc., professor

Russian Federation, 2, Solyanaya Sq., Tomsk, 6340032

Maria E. Rygina

Institute of High Current Electronics (IHCE) of the Siberian Branch of the Russian Academy of Sciences; National Research Tomsk State University

Email: L-7755me@mail.ru

post-graduate student, junior researcher

Russian Federation, 2/3, Akademicheskiy Av., Tomsk, 634055; 36, Lenin Av., Tomsk, 634050

Elizaveta A. Petrikova

Institute of High Current Electronics (IHCE) of the Siberian Branch of the Russian Academy of Sciences

Email: petrikova@opee.hcei.tsc.ru

junior researcher

Russian Federation, 2/3, Akademicheskiy Av., Tomsk, 634055

Anton D. Teresov

Institute of High Current Electronics (IHCE) of the Siberian Branch of the Russian Academy of Sciences

Email: tad514@yandex.ru

researcher

Russian Federation, 2/3, Akademicheskiy Av., Tomsk, 634055

References

  1. Władysiak R., Kozuń A. Dębowska K., Pacyniak T. Analysis of Crystallization Process of Intensive Cooled AlSi20CuNiCoMg Alloy. Archives of foundry engineering. 2017. Vol. 17(2). Р. 137–144.
  2. Marukovich E. A. Stetsenko V. Yu. Poluchenie-otlivok-iz-zaehvtekticheskogo-siluminametodom-litya-zakalochnym-zatverdevaniem [Production of castings from hypereutectic silumin by quenching solidification casting]. Casting and metallurgy. 2005. Nо. 2(34). Р. 142–144.
  3. Piatkowskia J., Wieszałab R. Tribological Properties of AlSi17Cu5Mg Alloy Modified with CuP Master Alloy with Various Speeds of Friction. Archives of foundry engineering. 2016. Vol. 16. Р. 45–48.
  4. Szymczak T., Gumienny G., Pacyniak T. Effect of Sr and Sb Modificationon the Microstructure and Mechanical Properties of 226 Silumin Pressure Casts. Archives of foundry engineering. 2015. Vol. 15(1). Р. 105–108.
  5. Roik T. A., Gavrysh O. A., Vitsiuk Y. Y. The Functional Properties Acquired by Antifriction Composites Produced from Silumin Grinding Waste. Powder metallurgy and metal ceramics. 2019. Vol. 57, Nо. 9-10. Р. 526–532.
  6. Qinglin Li, Binqiang Li, Jianjun Liu, Jinbao Li, Dexue Liu, Yefeng Lan, and Tiandong Xia Modification of hypereutectic Al–20 wt%Si alloy based on the addition of yttrium and Al–5Ti–1B modifiers mixing melt// International Journal of Metalcasting. 2019. Vol. 13. Р. 367–383.
  7. Afanasyev V. K., Prudnikova A. N. Vliyanie obrabotki rasplava na strukturu i prochnost’ promyshlennogo zaevtekticheskogo silumina [Effect of melt treatment on the structure and strength of industrial hypereutectic silumin]. Bulletin of TSU. 1998. Т. 3(3). P. 314.
  8. Martyushev N. V., Zykova A. P., Bashev V. S. Modificirovanie splava marki AK12 chasticami ul’tradispersnogo poroshka vol’frama. [Modification of the AK12 alloy with ultrafine tungsten powder particles] Metal processing (technology, equipment, tools). 2017. Nо. 3 (76). P. 51–58.
  9. Modifikaciya struktury i svojstv evtekticheskogo silumina elektronno-ionno-plazmennoj obrabotkoj [Modification of the structure and properties of eutectic silumin by electron-ion-plasma treatment] / edited by A. P. Laskovnev. Minsk, Belarus. navuka, 2013, 287 с.
  10. Elektronno-ionno-plazmennaya modifikaciya poverhnosti cvetnyh metallov i splavov [Electronion-plasma modification of the surface of non-ferrous metals and alloys]. Ed. N. N. Koval and Yu. F. Ivanov. Tomsk, NTL, 2016, 312 p.
  11. GOST 11069–2001. Alyuminij pervichnyj. Marki [GOST 11069–2001. Primary aluminum. Stamps]. Moscow, Standartinform Publ., 2008, 6 р.
  12. GOST 2169–69. Kremnij tekhnicheskij. [GOST 2169–69. Technical silicon.] Moscow, Standartinform Publ., 2001, 6 p.
  13. Koval N. N., Ivanov Yu. F. Nanostructuring of surfacesof metalloceramic and ceramic materials byelectron-beams. Russian Physics. Journal. 2008. Vol. 51. P. 505–516.
  14. Ivanov Yu. F., Petricova E. A., Ivanova O. V. and et. al. Numerical Simulation of the Temperature Field of Silumin. Russian Physics. Journal. 2015. Vol. 58. P. 478–484.
  15. Rotshtein V. P., Proskurovsky D. I., Ozur G. E., Ivanov Yu. F. Modifikaciya poverhnostnyh sloev metallicheskih materialov nizkoenergeticheskimi sil’notochnymi elektronnymi puchkami. [Modification of the surface layers of metallic materials by low-energy high-current electron beams]. Novosibirsk, SB RAS, Nauka, 2019, 348 p.
  16. Ponweiser N., Richter K. W. New investigation of phase equilibria in the system Al-Cu-Si. J. Alloys and Compound. 2012. Vol. 512. P. 252–263.
  17. He C. Y., Du Y., Chen H. L. and et. al. Experimental investigation and thermodynamic modeling of the Al-Cu-Si system. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry. 2009. Vol. 33. P. 200–210.
  18. Bannykh O. A., Budberg P. B., Alisova S. P. and et. al. Diagrams of the state of dual and multicomponent systems based on iron: Reference [Diagrammy sostoyaniya dvojnyh i mnogokomponentnyh sistem na osnove zheleza: Spravochnik]. Moscow, Metallurgy, 1986, 440 р.
  19. Zhang L. M., Lück R. Phase diagram of the Al-Cu-Fe quasicrystal-forming alloy system. III. Isothermal sections. International Journal of Materials Research. 2003. Vol. 94. P. 108–115.
  20. Du Y., Schuster J. C., Liu Z. K. and et. al. A thermodynamic description of the Al-Fe-Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments. Intermetallics. 2008. Vol. 16. P. 554–570.
  21. Dons A. L. AlFeSi – particles in commercial pure aluminum. Zeitschrift für Metallkunde. 1984. Vol. 75. P. 170–174.
  22. Miyazaki T., Kozakai T., Tsuzuki T. Phase decomposition of Al-Si-Fe ordered alloys. J. Materials Science. 1986. Vol. 21. P. 2557–2564.
  23. Wang C. P., X. J. Liu, I. Ohnuma and et. al. Phase equilibria in FeCu-X (X: Co, Cr, Si, V) ternary systems. J. Phase Equilibria. 2002. Vol. 23. Nо. 3. P. 236–245.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Ivanov Y.F., Eresko S.P., Klopotov A.A., Rygina M.E., Petrikova E.A., Teresov A.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies