Solution of the filtration problem with the optimal adjustment of the radio-reflecting net of a transformable reflector

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

In this paper, we consider the solution of the filtering problem using the Kalman filter with the optimal tuning of the radio-reflecting net. A large-sized transformable space-based reflector is considered. In the process of placing in orbit this structure, it is possible that the real form of the radio-reflecting net can deviate the desired one. To ensure point-to-point adjustment of the active part of the mesh, a cable-cable system is used. The nodal points of the radio-reflecting surface are connected to the back side of the net through cables. They have built-in actuators that allow you to change the length of the cables. A piezo actuator was selected as a control device. By point-by-point adjustment of the piezo actuators, the net is stretched to the required shape. This allows you to provide a high-quality radiation pattern and a high signal level when receiving and transmitting data. Specific values of the disturbing influences are given. To measure the supply voltage on the piezo actuator and the cable length, a voltage converter and a laser scanner are used. Possible deviations from the calculated initial position are determined. In accordance with the principle of separation, the estimation problem is solved first, then the control problem. The estimation problem is solved using the Kalman filter. The control problem is solved using the optimal control algorithm according to the hierarchy of target criteria. The results of numerical simulation are presented. The successful solution of the problem is shown with variable values of measurement noise and disturbing influences. Comparison with trajectories obtained using various optimal control algorithms is given.

Авторлар туралы

Sergey Kabanov

Baltic State Technical University “VOENMEH” named after D. F. Ustinov

Хат алмасуға жауапты Автор.
Email: kaba-sa@mail.ru

Dr. Sc., Professor

Ресей, 1, 1 Krasnoarmeyskaya St., St. Petersburg, 199005

Fedor Mitin

Baltic State Technical University “VOENMEH” named after D. F. Ustinov

Email: fedor28@list.ru

Cand. Sc. Associate Professor, Department of Control Systems and Computer Technologies

Ресей, 1, 1 Krasnoarmeyskaya St., St. Petersburg, 199005

Әдебиет тізімі

  1. Vovasov V. E., Betanov V. V., Gerko S. A. [Calibration technique of navigation glonass receiver using combinations of dual-frequency pseudorange measurements]. Aerospace MAI Journal. 2014, Vol. 21, No. 5, P. 137–144 (In Russ.).
  2. Fyodorov A. V., Hoang Vu. T. [Software package for motion control algorithms design of service module in geostationary orbit]. Aerospace MAI Journal. 2020, Vol. 27, No. 4, P. 192–205 (In Russ.).
  3. Каzаntsеv Z. А. [Deployment concept mechanical system of a radar antenna for space purposes]. Siberian Journal of Science and Technology. 2017, Vol. 18, No. 4. P. 858–867 (In Russ.).
  4. Xuelin D., Jingli D., Hong B., Guohui S. Deployment analysis of deployable antennas considering cable net and truss flexibility. Aerospace Science and Technology. 2018, Vol. 82–83, P. 557–565.
  5. Wang H. Multifrequency Spaceborne Deployable Radiometer Antenna Designs. IEEE Aerospace and electronic systems magazine. 2020. Vol. 35, No. 5, P. 28–35.
  6. Deployable reflector system for satellite applications, in: 2005 SBMO / M. Terada, N. Bludworth, J. Moore et al. IEEE MTT-S International Conference on Microwave and Optoelectronics. Brazil. 2005. P. 647–656.
  7. Li T. Deployment analysis and control of deployable space antenna. Aerospace Science and Technology. 2012, Vol. 18, No. 1, P. 42–47.
  8. Reznik S. V., Chubanov D. E. [Modeling the dynamics of the deployment of a large-sized transformable reflector of a space antenna made of composite material]. RUDN Journal of Engineering Researches. 2018, Vol. 19, No. 4, P. 411–425 (In Russ.).
  9. Bel’kov A. V., Belov S. V., Zhukov A. P., Pavlov M. S., Ponomarev S. V., Kuznecov S. A. [Method for calculation of the stress-strain state for cable-membrane space reflector structures]. Vestn. Tomsk. Gos. Univ. Mat. Mekh. 2019, No. 62, P. 5–18 (In Russ.).
  10. Berns V. A., Levin V. E., Krasnorutsky D. A., Marinin D. A., Zhukov E. P., Malenkova V. V., Lakiza P. A. Development of a calculation and experimental method for modal analysis of large transformable space structures. Spacecrafts & Technologies. 2018, Vol. 2, No. 3, P. 125–133.
  11. Kabanov S. A., Zimin B. A., Mitin F. V. [Development and Research of Mathematical Models of Deployment of Mobole Parts of Transformable Space Construction. Part I]. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020, Vol. 21, No. 1, P. 51–64 (In Russ.).
  12. Kabanov S. A., Zimin B. A., Mitin F. V. [Development and Research of Mathematical Models of Deployment of Mobole Parts of Transformable Space Construction. P. II]. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020, Vol. 21, No. 2, P. 117–128 (In Russ.).
  13. Kabanov S. A., Mitin F. V. Optimization of the stages of deploying a large-sized space-based reflector. Acta Astronautica, Special Issue on 6th SFS 2019, 2020, No. 176, P. 717–724.
  14. Huang H., Cheng Q., Zheng L., Yang Y. Development for petal-type deployable solid-surface reflector by uniaxial rotation mechanism. Acta Astronautica. 2021, No. 178, P. 511–521.
  15. Taygin V. B., Lopatin А. V. [Method of achievement the high accuracy of the shape of reflectors of mirror antennas of spacecraft]. Spacecrafts & Technologies. 2019, Vol. 3, No. 4, P. 200– 208 (In Russ.).
  16. Kalabegashvili G. I., Bikeev E. V., Mathylenko M. G. [Determination of the minimal reflecting surface points number required for assessment of large-size transformable antenna pattern deviation]. Siberian Journal of Science and Technology. 2018, Vol. 19, No. 1, P. 66–75 (In Russ.).
  17. Ishkov V. N. [Solar geoeffective phenomena: Action on the near-earth outer space and the possibility of the forecast]. Slozhnye sistemy. 2012, No. 4 (5), P. 21–41 (In Russ.).
  18. Mihalyaev B. B., Derteev S. B., Lagaev I. Y., Osmonov T. T. [Vliyanie solnechnoj aktivnosti na magnitosferu Zemli]. Aktual’nye problemy sovremennoj fiziki i matematiki. trudy. 2017, P. 92–97 (In Russ.).
  19. Panich A. E. P’ezokeramicheskie aktyuatory [Piezoceramic actuators]. Rostov-na-Donu, YUFU Publ., 2008, 159 p.
  20. PIN-50-U-4/20-DKh – preobrazovatel’ izmeritel’nyy postoyannogo i peremennogo napryazheniya [PIN-50-U-4/20-DX – DC and AC voltage Measuring Converter]. Available at: https://www.electronpribor.ru/catalog/850/pin-50-u-420-dh.htm (accessed: 10.10.2021).
  21. 3D skanery RangeVision [3D Scanners Range Vision]. Available at: https://printerplotter.ru/3d-oborudovanie/3d-scanners/rangevision/?yclid=5975775935832053836 (accessed: 10.10.2021).
  22. Kabanov S. A., Mitin F. V., Krivushov A. I., Ulybushev E. A. Control of a piezo actuator to adjust reflrctive surface of the space-based reflector. Russian Aeronautics (Iz. VUZ). 2018, Vol. 61, No. 4, P. 629–635.
  23. Spravochnik po teorii avtomaticheskogo upravlenija. Pod red. A. A. Krasovskogo [Handbook on the theory of automatic control. Ed. by A. A. Krasovskij]. Moscow, Nauka Publ., 1987, 712 p.
  24. Kabanov S. A. Optimizaciya dinamiki sistem pri deystvii vozmushcheniy [Optimization of the dynamics of systems under the action of disturbances]. Moscow, Fizmatlit Publ., 2008, 200 p.
  25. Kabanov D. S. [Optimal control of a nuclear reactor taking into account random disturbances].
  26. Journal of instrument engineering. 2009, No. 5, P. 27–30 (In Russ.).
  27. Kabanov S. A. Upravlenie sistemami na prognoziruyushchih modelyah [Control systems based on predictive model]. SPb., SPbGU Publ., 1997, 200 p.
  28. Kabanov S. A., Mitin F. V. Optimization of the Processes of Deploymentand Shape Generationfor a Transformable Space-Based Reflector. Journal of Computer and Systems Sciences International. 2021, Vol. 60, No. 2, P. 283–302.
  29. Kabanov S. A., Mitin F. V. [Optimal control for piezo actuator for setting the shape of the radioreflecting network]. Journal of Instrument Engineering. 2021, Vol. 64, No. 3, P. 183–191 (In Russ.).
  30. Malyshev V. V., Krasil’shchikov M. N., Karlov V. I. Optimizaciya nablyudeniya i upravleniya letatel’nyh apparatov [Optimization of surveillance and control of aircraft]. Moscow, Mashinostroenie Publ., 1989, 312 p.
  31. Kabanov S. A., Mitin F. V., Shevchik A. A. [Solution of the filtration problem with the optimal adjustment of the radio reflecting net of a transformable reflector]. Sistemnyy analiz, upravlenie i navigaciya. Moscow, Izd-vo MAI Publ., 2021, P. 170–171.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Kabanov S.A., Mitin F.V., 2021

Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>