Study of impeller design parameters effect on the axial thrust of a centrifugal electric pump assembly

Cover Page

Cite item

Full Text

Abstract

This paper discusses and estimates the effect of some design parameters on the value of axial thrust appearing during functioning of the core component of a spacecraft’s (SC) thermal control subsystem – electric pump unit (EPU). The major causes of axial forces in centrifugal pumps of in-line arrangement are described and analysed. Design parameters having an effect of axial thrust value are: impeller position relatively to EPU diffuser (position was chosen based on dimension chain calculation), presence and size of discharging holes in the impeller, number and shape of impeller vanes (numbers of 14 & 16 were considered). EPU impellers with different number and shape of vanes were designed and manufactured. A series of experiments was carried out in order to research the effects of all aforementioned parameters: measurements of head vs flow curves and axial thrust values at given flow values. Each parameter’s contribution in the value of axial thrust appearing during EPU functioning is evaluated. Vibration measurements were obtained and analysed for electric motor DBE 63-25-6.3 fitted with different impellers. In this study, a DLP additive process was used for impellers manufacturing, which significantly sped up the tests. Obtained results will extend knowledge of processes taking place in EPU impellers, enable choice of the aforementioned parameters at design phase so to minimise axial thrust appearing during functioning of a centrifugal EPU of a spacecraft’s thermal control subsystem. Outcomes of this study are capable of improving SC reliability at all phases of its life because EPU axial thrust causes its premature loss of operability.

About the authors

Zoya A. Kuznetsova

JSC Academician M. F. Reshetnev Information Satellite Systems

Author for correspondence.
Email: u-z-a@yandex.ru

category 3 design engineer; JSC Academician M. F. Reshetnev Information Satellite Systems

Russian Federation, 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972

Mikhail I. Sinichenko

JSC Academician M. F. Reshetnev Information Satellite Systems

Email: smi320@iss-reshetnev.ru

head of department; JSC Academician M. F. Reshetnev Information Satellite
Systems

Russian Federation, 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972

Artem D. Kuznetsov

JSC Academician M. F. Reshetnev Information Satellite Systems

Email: tember63@mail.ru

category 2 design engineer; JSC Academician M. F. Reshetnev Information Satellite Systems

Russian Federation, 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972

Irina A. Kleshnina

JSC Academician M. F. Reshetnev Information Satellite Systems

Email: kleshninaia@iss-reshetnev.ru

category 3 design engineer, JSC Academician M. F. Reshetnev Information Satellite Systems

Russian Federation, 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972

Fedor K. Sin'kovskiy

JSC Academician M. F. Reshetnev Information Satellite Systems

Email: sfk@iss-reshetnev.ru

Deputy director of the Industrial Center for Large-Sized Foldable Mechanical Structures; JSC Academician M. F. Reshetnev Information Satellite Systems

Russian Federation, 52, Lenin St., Zheleznogorsk, Krasnoyarsk region, 662972

References

  1. Ley W., Wittman K., Hallmann W. Handbook of Space Technology, 2009, 884 p.
  2. Sarafin T. P, Larson W. J. Spacecraft structures and mechanisms. From Concept to Launch, 2007, 850 p.
  3. Lomakin A. A. Tsentrobezhnye i osevye nasosy [Centrifugal and axial pumps]. Moscow, Mashinostroenie Publ., 1996, 364 p.
  4. Zimnitskiy V. A. et al. Lopastnye nasosy [Vane pumps]. Leningrad, Mashinostroenie Publ., 1986, 334 p.
  5. Perevoshchikov S. I. Konstruktsiya tsentrobezhnykh nasosov (obshchie svedeniya) [The design of centrifugal pumps (general information)]. Tyumen, Tsogu Publ., 2013, 228 p.
  6. Malyushenko V. V., Mikhaylov A. K. Energeticheskie nasosy [Energy pumps]. Moscow, Energoizdat Publ., 1981, 200 p.
  7. Yarementko O. V. Ispytaniya nasosov [Pump Testing]. Moscow, Mashinostroenie Publ., 1976, 225 p.
  8. Mikhaylov A. K., Malyushenko V. V. Lopastnye nasosy. Teoriya, raschet i konstruirovanie. [Vane pumps. Theory, calculation and construction]. Moscow, Mashinostroenie Publ., 1977, 288 p.
  9. Kraev M. V., Lukin V. A., Ovsyannikov B. V. Maloraskhodnye nasosy aviatsionnykh i kosmicheskikh sistem [Low-flow pumps of aviation and space systems]. Moscow, Mashinostroenie Publ., 1985, 128 p.
  10. Zlenko M. A., Nagaytsev M. V., Dovbysh V. M. Additivnye tekhnologii v mashinostroenii. Posobie dlya inzhenerov [Additive technologies in mechanical engineering. A manual for engineers]. Moscow, NAMI Publ., 2015, 220 p.
  11. Baybakov O. V. Primenenie EVM v raschetakh protochnoy polosti lopastnykh gidromashin [The use of computers in the calculations of the flowing cavity of paddle hydraulic machines]. Moscow, MGTU im. N. E. Baumana Publ., 1982, 65 p.
  12. Branshteyn L. Ya. Spravochnik konstruktora gidroturbin [Hydroturbine Designer Reference]. Moscow, Mashinostroenie Publ., 1971, 304 p.
  13. Sazonov Yu. A., Mulenko V. V., Balaka A. Yu. [Computer modeling and development of a methodology for designing dynamic pumps and machines]. Territoriya neftegaz. 2011, No. 10, P. 34–36 (In Russ.).
  14. Karelin V. Ya. Kavitatsionnye yavleniya v tsentrobezhnykh i osevykh nasosakh [Cavitation phenomena in centrifugal and axial pumps]. Moscow, Mashinostroenie Publ., 1976, 325 p.
  15. Loytsyanskiy L. G. Mekhanika zhidkosti i gaza [Mechanics of fluid and gas]. Moscow, Drofa Publ., 2003, 840 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Kuznetsova Z.A., Sinichenko M.I., Kuznetsov A.D., Kleshnina I.A., Sin'kovskiy F.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies