Nonparametric method for testing the hypothesis of independence of random variables and its application in the analysis of remote sensing data

封面

如何引用文章

详细

Testing the hypothesis of independence of random variables is one of the main stages of system analysis of statistical data. Based on its results, a synthesis of effective decision-making algorithms is carried out. The traditional method of testing the hypothesis of independence of random variables is based on the use of the Pearson criterion, which contains a difficult to formalize stage of dividing the range of values of random variables into multidimensional intervals. A method for testing the hypothesis of independence of random variables is proposed, which uses a nonparametric pattern recognition algorithm corresponding to the maximum likelihood criterion. Its application makes it possible to circumvent the problem of decomposing the range of values of random variables into intervals. The idea of the approach is to form a training sample based on the initial statistical data to solve a two-alternative pattern recognition problem. Each class is defined under the assumption of independence or dependence of random variables, which is manifested in the difference in their distribution laws in the classes. Under these conditions, it becomes possible to replace the initial hypothesis with the task of checking the reliability of the difference in the probabilities of pattern recognition errors in classes. Using the apparatus of graph theory, the proposed method is developed in the formation of sets of independent random variables. The obtained results are generalized when testing the hypothesis of independence of random variables for large volumes of statistical data based on compression of the original information. This allows to increase the computational efficiency of the problem being solved. The article substantiates a method for testing the hypothesis of independence of random variables, based on the use of a nonparametric pattern recognition algorithm in conditions of large volumes of statistical data. The results of comparing the technique with the generally recognized Pearson consensus criterion in the study of ambiguous dependencies between random variables of varying complexity are presented. The effectiveness of the proposed method is confirmed by the results of its application in processing remote sensing information from anthropogenic territories in the vicinity of the city of Krasnoyarsk.

全文:

Introduction

The universal and generally accepted criterion for testing hypotheses about the distributions of random variables, including their independence, is the Pearson criterion [1]. When using it, it is necessary to solve the problem of partitioning the area of values of random variables into multivariate intervals and to establish the law of distribution of the criterion that determines the dependences between the probabilistic characteristics of random variables. In [2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 4] a new approach is proposed that allows simplifying the test of the hypothesis of independence of random variables using a nonparametric algorithm of nuclear-type pattern recognition corresponding to the maximum likelihood criterion. The idea of the approach is to solve a two-alternative problem of pattern recognition. The classes being considered are defined by assumptions about dependence and independence of random variables. On this basis, a training sample is formed from the initial statistical data on observations of random variables and the problem of pattern recognition is solved. The ratio between the estimates of recognition error probabilities of the introduced classes confirms or refutes the hypothesis being considered.

The purpose of this paper is to generalise and develop a nonparametric method of testing the hypothesis of independence of random variables for conditions of the large volume of statistical data and its application in the analysis of information on remote sensing of anthropogenic territories.

Methodology for testing the hypothesis of independence of random variables

Let there be a sample V= x i ,i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2 da9maabmaabaGaamiEamaaCaaaleqabaGaamyAaaaakiaaykW7caGG SaGaaGjbVlaadMgacqGH9aqpdaqdaaqaaiaaigdacaaMc8Uaaiilai aaysW7caWGUbaaaaGaayjkaiaawMcaaaaa@46E8@  of the n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EB@  volume, composed of independent observations of a two-dimensional random variable x= x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9maabmaabaGaamiEamaaBaaaleaacaaIXaaabeaakiaaykW7caGG SaGaaGjbVlaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPa aaaaa@414A@ . Let us suppose that the V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36F4@  sample is drawn from the general population characterised by the densities of the probabilities p x 1 p x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaa ysW7caWGWbWaaeWaaeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcca GLOaGaayzkaaaaaa@407F@  or p x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIXaaabeaakiaaykW7caGGSaGaaGjb VlaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@403C@ . On the basis of statistical data of V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36F4@  it is necessary to test the hypothesis

H 0 :p x 1 , x 2 p x 1 p x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIWaaabeaakiaaysW7caGG6aGaaGjbVlaaysW7caWGWbWa aeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYcaca aMe8UaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiab ggMi6kaadchadaqadaqaaiaadIhadaWgaaWcbaGaaGymaaqabaaaki aawIcacaGLPaaacaaMe8UaamiCamaabmaabaGaamiEamaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaaaaa@538D@

of independence of random variables x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37FD@ , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@37FE@ .

To test the H 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIWaaabeaaaaa@37AB@  hypothesis let us solve the two-alternative problem of pattern recognition. By classes Ω 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaaigdaaeqaaaaa@388E@ , Ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaaikdaaeqaaaaa@388F@  areas of definition for probability densities p x 1 p x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaa ysW7caWGWbWaaeWaaeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcca GLOaGaayzkaaaaaa@407F@ , p x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIXaaabeaakiaaykW7caGGSaGaaGjb VlaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@403C@  are meant. Under these conditions, the Bayesian decision rule corresponding to the maximum likelihood criterion has the following form

m x : x Ω 1 ,if p x 1 , x 2 <p x 1 p x 2 , x Ω 2 ,if p x 1 , x 2 >p x 1 p x 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBamaabm aabaGaamiEaaGaayjkaiaawMcaaiaaysW7caGG6aGaaGjbVpaaceaa eaqabeaacaWG4bGaeyicI4SaeuyQdC1aaSbaaSqaaiaaigdaaeqaaO GaaGPaVlaacYcacaaMe8UaaeyAaiaabAgacaqGGaGaamiCamaabmaa baGaamiEamaaBaaaleaacaaIXaaabeaakiaaykW7caGGSaGaaGjbVl aadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH8aap caWGWbWaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOa GaayzkaaGaaGjbVlaadchadaqadaqaaiaadIhadaWgaaWcbaGaaGOm aaqabaaakiaawIcacaGLPaaacaGGSaaabaGaamiEaiabgIGiolabfM 6axnaaBaaaleaacaaIYaaabeaakiaaykW7caGGSaGaaGjbVlaabMga caqGMbGaaeiiaiaadchadaqadaqaaiaadIhadaWgaaWcbaGaaGymaa qabaGccaaMc8UaaiilaiaaysW7caWG4bWaaSbaaSqaaiaaikdaaeqa aaGccaGLOaGaayzkaaGaeyOpa4JaamiCamaabmaabaGaamiEamaaBa aaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaaysW7caWGWbWaaeWa aeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaG jbVlaac6caaaGaay5Eaaaaaa@8318@

In contrast to the traditional formulation of the pattern recognition problem, while synthesizing a decisive rule m x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBamaabm aabaGaamiEaaGaayjkaiaawMcaaaaa@3991@  there is no a priori training sample containing information about the belonging of the V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36F4@  sample elements to one or another class. This information must be discovered in the process of implementation of the H 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIWaaabeaaaaa@37CC@  hypothesis testing methodology, which is based on the following actions.

From the V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36F4@  sample recover probability densities p x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIXaaabeaakiaaykW7caGGSaGaaGjb VlaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@403C@ , p x 1 p x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaa ysW7caWGWbWaaeWaaeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcca GLOaGaayzkaaaaaa@407F@ , using their non-parametric Rosenblatt MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  Parzen type estimates [5; 6],

p ¯ x 1 , x 2 = 1 n c 1 c 2 i=1 n F x 1 x 1 i c 1 F x 2 x 2 i c 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYca caaMe8UaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaai abg2da9maalaaabaGaaGymaaqaaiaad6gacaaMc8Uaam4yamaaBaaa leaacaaIXaaabeaakiaaykW7caWGJbWaaSbaaSqaaiaaikdaaeqaaa aakmaaqahabaGaamOramaabmaabaWaaSaaaeaacaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaam yAaaaaaOqaaiaadogadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOaGa ayzkaaGaaGjbVlaadAeadaqadaqaamaalaaabaGaamiEamaaBaaale aacaaIYaaabeaakiabgkHiTiaadIhadaqhaaWcbaGaaGOmaaqaaiaa dMgaaaaakeaacaWGJbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkai aawMcaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHi Ldaaaa@653F@ ,

p ¯ x 1 p ¯ x 2 = 1 n 2 c 1 c 2 i=1 n j=1 n F x 1 x 1 i c 1 F x 2 x 2 j c 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaGaaGjbVlqadchagaqeamaabmaabaGaamiEamaaBaaaleaacaaIYa aabeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaa d6gadaahaaWcbeqaaiaaikdaaaGccaaMc8Uaam4yamaaBaaaleaaca aIXaaabeaakiaaykW7caWGJbWaaSbaaSqaaiaaikdaaeqaaaaakmaa qahabaWaaabCaeaacaWGgbWaaeWaaeaadaWcaaqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccqGHsislcaWG4bWaa0baaSqaaiaaigdaaeaa caWGPbaaaaGcbaGaam4yamaaBaaaleaacaaIXaaabeaaaaaakiaawI cacaGLPaaacaaMe8UaamOramaabmaabaWaaSaaaeaacaWG4bWaaSba aSqaaiaaikdaaeqaaOGaeyOeI0IaamiEamaaDaaaleaacaaIYaaaba GaamOAaaaaaOqaaiaadogadaWgaaWcbaGaaGOmaaqabaaaaaGccaGL OaGaayzkaaaaleaacaWGQbGaeyypa0JaaGymaaqaaiaad6gaa0Gaey yeIuoaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5 aaaa@6C73@ .

In the statistics p ¯ x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYca caaMe8UaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaa aa@4054@ , p ¯ x 1 p ¯ x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaGaaGjbVlqadchagaqeamaabmaabaGaamiEamaaBaaaleaacaaIYa aabeaaaOGaayjkaiaawMcaaaaa@40AF@  nuclear functions F u v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaamyDamaaBaaaleaacaWG2baabeaaaOGaayjkaiaawMcaaaaa @3A98@  satisfy the conditions of positivity, symmetry and normalization.

The values of blurring coefficients c v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWG2baabeaaaaa@3828@ , v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODaaaa@3714@  = 1, 2 of the nuclear functions decrease as the n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@370C@  volume of the V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36F4@  sample of statistical data increases. Then the nonparametric decision rule for classification of random variables x= x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9maabmaabaGaamiEamaaBaaaleaacaaIXaaabeaakiaaykW7caGG SaGaaGjbVlaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPa aaaaa@414A@  is written as follows

m ¯ x : x Ω 1 ,if  p ¯ x 1 , x 2 < p ¯ x 1 p ¯ x 2 , x Ω 2 ,if  p ¯ x 1 , x 2 > p ¯ x 1 p ¯ x 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaara WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaGjbVlaacQdacaaMe8+a aiqaaqaabeqaaiaadIhacqGHiiIZcqqHPoWvdaWgaaWcbaGaaGymaa qabaGccaaMc8UaaiilaiaaysW7caqGPbGaaeOzaiaabccaceWGWbGb aebadaqadaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaMc8Uaai ilaiaaysW7caWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaGaeyipaWJabmiCayaaraWaaeWaaeaacaWG4bWaaSbaaSqaaiaaig daaeqaaaGccaGLOaGaayzkaaGaaGjbVlqadchagaqeamaabmaabaGa amiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaacYcaae aacaWG4bGaeyicI4SaeuyQdC1aaSbaaSqaaiaaikdaaeqaaOGaaGPa VlaacYcacaaMe8UaaeyAaiaabAgacaqGGaGabmiCayaaraWaaeWaae aacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYcacaaMe8Ua amiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabg6da+i qadchagaqeamaabmaabaGaamiEamaaBaaaleaacaaIXaaabeaaaOGa ayjkaiaawMcaaiaaysW7ceWGWbGbaebadaqadaqaaiaadIhadaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaacaaMe8UaaiOlaaaacaGL 7baaaaa@83C0@

The optimal blurring coefficients of the nuclear functions of the m ¯ x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaara WaaeWaaeaacaWG4baacaGLOaGaayzkaaaaaa@39A9@  decision rule are chosen on the basis of the analysis of approximation properties of nonparametric estimates of probability densities p ¯ x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYca caaMe8UaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaa aa@4054@ , p ¯ x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaaaaa@3A9D@ , p ¯ x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaaaaa@3A9E@  from the minimum condition, their corresponding estimates of standard deviations from the p x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIXaaabeaakiaaykW7caGGSaGaaGjb VlaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@403C@ , p x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaaa @3A85@ , p x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaa @3A86@ . For example, for p ¯ x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaaaaa@3A9D@  such a criterion is [7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 11]

p ¯ 2 x 1 d x 1 2 n j=' n p ¯ x 1 j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaa8qCaeaace WGWbGbaebadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaadIhadaWg aaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaaMe8UaamizaiaadI hadaWgaaWcbaGaaGymaaqabaaabaGaeyOeI0IaeyOhIukabaGaeyOh IukaniabgUIiYdGccqGHsisldaWcaaqaaiaaikdaaeaacaWGUbaaam aaqahabaGabmiCayaaraWaaeWaaeaacaWG4bWaa0baaSqaaiaaigda aeaacaWGQbaaaaGccaGLOaGaayzkaaaaleaacaWGQbGaeyypa0Jaai iyaaqaaiaad6gaa0GaeyyeIuoaaaa@544F@ .

Let us define the estimates of probabilities of pattern recognition errors ρ ¯ 1 c ¯ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae badaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiqadogagaqeamaabmaa baGaaGymaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3DAF@ , ρ ¯ 2 c ¯ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae badaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiqadogagaqeamaabmaa baGaaGOmaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3DB1@  using the m ¯ x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaara WaaeWaaeaacaWG4baacaGLOaGaayzkaaaaaa@39A9@  dsision rule on the basis of raw statistical data of V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36F4@  at optimal blurring coefficients c ¯ 1 = c ¯ 1 1 , c ¯ 2 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4yayaara WaaeWaaeaacaaIXaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaaceWG JbGbaebadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaigdaaiaawI cacaGLPaaacaaMc8UaaiilaiaaysW7ceWGJbGbaebadaWgaaWcbaGa aGOmaaqabaGcdaqadaqaaiaaigdaaiaawIcacaGLPaaaaiaawIcaca GLPaaaaaa@481F@ , c ¯ 2 = c ¯ 1 2 , c ¯ 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4yayaara WaaeWaaeaacaaIYaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaaceWG JbGbaebadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaikdaaiaawI cacaGLPaaacaaMc8UaaiilaiaaysW7ceWGJbGbaebadaWgaaWcbaGa aGOmaaqabaGcdaqadaqaaiaaikdaaiaawIcacaGLPaaaaiaawIcaca GLPaaaaaa@4822@  of the nuclear functions of statistics p ¯ x 1 p ¯ x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaGaaGjbVlqadchagaqeamaabmaabaGaamiEamaaBaaaleaacaaIYa aabeaaaOGaayjkaiaawMcaaaaa@40AF@ , p ¯ x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYca caaMe8UaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaa aa@4054@  respectively.

The values ρ ¯ t c ¯ 1 , c ¯ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae badaWgaaWcbaGaamiDaaqabaGcdaqadaqaaiqadogagaqeamaabmaa baGaaGymaaGaayjkaiaawMcaaiaaykW7caGGSaGaaGjbVlqadogaga qeamaabmaabaGaaGOmaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa @44FA@  are calculated in the ‘rolling examination’ mode on the V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36F4@  sample assuming that its elements belong to the Ω t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaadshaaeqaaaaa@38CC@  class.

ρ ¯ t c ¯ 1 , c ¯ 2 = 1 n j=1 n 1 δ j , δ ¯ j ,t=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae badaWgaaWcbaGaamiDaaqabaGcdaqadaqaaiqadogagaqeamaabmaa baGaaGymaaGaayjkaiaawMcaaiaaykW7caGGSaGaaGjbVlqadogaga qeamaabmaabaGaaGOmaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiab g2da9maalaaabaGaaGymaaqaaiaad6gaaaWaaabCaeaacaaIXaWaae WaaeaacqaH0oazdaqadaqaaiaadQgaaiaawIcacaGLPaaacaGGSaGa aGjbVlqbes7aKzaaraWaaeWaaeaacaWGQbaacaGLOaGaayzkaaaaca GLOaGaayzkaaGaaGPaVlaaykW7caGGSaGaaGjbVlaaysW7caWG0bGa eyypa0JaaGymaiaaykW7caGGSaGaaGjbVlaaikdaaSqaaiaadQgacq GH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaa@6894@ ,

where δ j =t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aae WaaeaacaWGQbaacaGLOaGaayzkaaGaeyypa0JaamiDaaaa@3C35@  are designations of the type of x t = x 1 t , x 2 t Ω t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaamiDaaaakiabg2da9maabmaabaGaamiEamaaDaaaleaa caaIXaaabaGaamiDaaaakiaaykW7caGGSaGaaGjbVlaadIhadaqhaa WcbaGaaGOmaaqaaiaadshaaaaakiaawIcacaGLPaaacqGHiiIZcqqH PoWvdaWgaaWcbaGaamiDaaqabaaaaa@48A5@ ;

δ ¯ j = t,if x j Ω t 0,if x j Ω t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiTdqMbae badaqadaqaaiaadQgaaiaawIcacaGLPaaacqGH9aqpdaGabaabaeqa baGaamiDaiaacYcacaaMe8UaaeyAaiaabAgacaaMe8UaaGjbVlaadI hadaahaaWcbeqaaiaadQgaaaGccqGHiiIZcqqHPoWvdaWgaaWcbaGa amiDaaqabaaakeaacaaIWaGaaiilaiaaysW7caqGPbGaaeOzaiaays W7caaMe8UaamiEamaaCaaaleqabaGaamOAaaaakiabgMGiplabfM6a xnaaBaaaleaacaWG0baabeaaaaGccaGL7baaaaa@594A@

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  «solving» the algorithm of m ¯ x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaara WaaeWaaeaacaWG4baacaGLOaGaayzkaaaaaa@39A9@  about the belonging of the x j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaamOAaaaaaaa@3832@  situation to on of the classes Ω t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaadshaaeqaaaaa@38CC@ , t=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 da9iaaigdacaaMc8UaaiilaiaaysW7caaIYaaaaa@3D57@ .

While calculating ρ ¯ t c ¯ 1 , c ¯ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae badaWgaaWcbaGaamiDaaqabaGcdaqadaqaaiqadogagaqeamaabmaa baGaaGymaaGaayjkaiaawMcaaiaaykW7caGGSaGaaGjbVlqadogaga qeamaabmaabaGaaGOmaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa @44FA@  in accordance with the ‘rolling examination’ methodology the situation x j = x 1 j , x 2 j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaamOAaaaakiabg2da9maabmaabaGaamiEamaaDaaaleaa caaIXaaabaGaamOAaaaakiaaykW7caGGSaGaaGjbVlaadIhadaqhaa WcbaGaaGOmaaqaaiaadQgaaaaakiaawIcacaGLPaaaaaa@4450@  from the V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36F4@  sample, which is fed into the algorithm of m ¯ x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyBayaara WaaeWaaeaacaWG4baacaGLOaGaayzkaaaaaa@39A9@  for control, is excluded from the process of producing statistics p ¯ x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYca caaMe8UaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaa aa@4054@ , p ¯ x 1 p ¯ x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaGaaGjbVlqadchagaqeamaabmaabaGaamiEamaaBaaaleaacaaIYa aabeaaaOGaayjkaiaawMcaaaaa@40AF@ .

The indicator function is defined by the expression

1 δ j , δ ¯ j = 0,ifδ j = δ ¯ j , 1,ifδ j δ ¯ j . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGymamaabm aabaGaeqiTdq2aaeWaaeaacaWGQbaacaGLOaGaayzkaaGaaiilaiqb es7aKzaaraWaaeWaaeaacaWGQbaacaGLOaGaayzkaaaacaGLOaGaay zkaaGaeyypa0ZaaiqaaqaabeqaaiaaicdacaaMe8UaaiilaiaaysW7 caWGPbGaamOzaiaaysW7caaMe8UaeqiTdq2aaeWaaeaacaWGQbaaca GLOaGaayzkaaGaeyypa0JafqiTdqMbaebadaqadaqaaiaadQgaaiaa wIcacaGLPaaacaGGSaaabaGaaGymaiaaysW7caGGSaGaaGjbVlaadM gacaWGMbGaaGjbVlaaysW7cqaH0oazdaqadaqaaiaadQgaaiaawIca caGLPaaacqGHGjsUcuaH0oazgaqeamaabmaabaGaamOAaaGaayjkai aawMcaaiaaysW7caGGUaaaaiaawUhaaaaa@6CD5@

Let us denote by ρ ¯ ¯ t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae HbaebadaWgaaWcbaGaamiDaaqabaaaaa@392D@  the value of the estimation of the probability of pattern recognition error assuming that the V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36F4@  sample elements belong to the class Ω t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaadshaaeqaaaaa@38CC@ , t=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 da9iaaigdacaaMc8UaaiilaiaaysW7caaIYaaaaa@3D57@ . Let us compare the values ρ ¯ ¯ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae HbaebadaWgaaWcbaGaaGymaaqabaaaaa@38EF@ , ρ ¯ ¯ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae HbaebadaWgaaWcbaGaaGOmaaqabaaaaa@38F0@ .

Then the H 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIWaaabeaaaaa@37CC@  hypothesis is valid if ρ ¯ ¯ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae HbaebadaWgaaWcbaGaaGymaaqabaaaaa@38EF@  < ρ ¯ ¯ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae HbaebadaWgaaWcbaGaaGOmaaqabaaaaa@38F0@ . Otherwise, at ρ ¯ ¯ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae HbaebadaWgaaWcbaGaaGOmaaqabaaaaa@38F0@  < ρ ¯ ¯ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae HbaebadaWgaaWcbaGaaGymaaqabaaaaa@38EF@  the random variables x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37FD@  and x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@37FE@  are independent.

When the n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@370C@  volume of the V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36F4@  smple is limited, the problem of confidence estimation of probabilities of pattern recognition errors arises. For its solution, the traditional methodology of confidence estimation of probabilities or Kolmogorov MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  Smirnov criterion is used.

For example, when using the Kolmogorov MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  Smirnov criterion, the deviation D ¯ 12 = ρ ¯ ¯ 1 ρ ¯ ¯ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmirayaara WaaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9maaemaabaGafqyW diNbaeHbaebadaWgaaWcbaGaaGymaaqabaGccqGHsislcuaHbpGCga qegaqeamaaBaaaleaacaaIYaaabeaaaOGaay5bSlaawIa7aaaa@437D@  is compared to the threshold value [12]

D β = ln β 2 /n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacqaHYoGyaeqaaOGaeyypa0ZaaOaaaeaadaWcgaqaaiabgkHi TiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiabek7aIbqaaiaaikdaaa aacaGLOaGaayzkaaaabaGaamOBaaaacaaMe8oaleqaaaaa@4337@ .

Here β MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@37BA@  is a probability (risk) of rejecting the hypothesis H ¯ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmisayaara WaaSbaaSqaaiaaicdaaeqaaaaa@37E4@ : ρ 1 = ρ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaeqyWdi3aaSbaaSqaaiaaikda aeqaaaaa@3C78@ . If the ratio D ¯ 12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmirayaara WaaSbaaSqaaiaaigdacaaIYaaabeaaaaa@389D@  < D β MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacqaHYoGyaeqaaaaa@38AF@  is satisfied, then the H ¯ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmisayaara WaaSbaaSqaaiaaicdaaeqaaaaa@37E4@  hypothesis is valid and the risk of rejecting it does not exceed the value ofβ. At D ¯ 12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmirayaara WaaSbaaSqaaiaaigdacaaIYaaabeaaaaa@389D@  > D β MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacqaHYoGyaeqaaaaa@38AF@  the H ¯ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmisayaara WaaSbaaSqaaiaaicdaaeqaaaaa@37E4@  hypothesis rejected.

Formation of sets of independent random variables

There is a sample of observations V= x v i ,v= 1,k ¯ ,i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2 da9maabmaabaGaamiEamaaDaaaleaacaWG2baabaGaamyAaaaakiaa ykW7caGGSaGaaGjbVlaadAhacqGH9aqpdaqdaaqaaiaaigdacaaMc8 UaaiilaiaaysW7caWGRbaaaiaaykW7caGGSaGaaGjbVlaadMgacqGH 9aqpdaqdaaqaaiaaigdacaaMc8UaaiilaiaaysW7caWGUbaaaaGaay jkaiaawMcaaaaa@5330@  of the n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@370C@  volume composed of statistically independent observations of the components of the multivariate random variable x= x v ,v= 1,k ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9maabmaabaGaamiEamaaBaaaleaacaWG2baabeaakiaaykW7caGG SaGaaGjbVlaadAhacqGH9aqpdaqdaaqaaiaaigdacaaMc8Uaaiilai aaysW7caWGRbaaaaGaayjkaiaawMcaaaaa@4720@ . The type of the p x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEaaGaayjkaiaawMcaaaaa@3994@  probability density function is unknown a priori. It is necessary according to the statistics of V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36F4@ , using the hypothesis testing criterion proposed above [13 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 16]

H vj :p x v , x j p x v p x j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWG2bGaaGPaVlaadQgaaeqaaOGaaGjbVlaacQdacaaMe8Ua aGjbVlaadchadaqadaqaaiaadIhadaWgaaWcbaGaamODaaqabaGcca aMc8UaaiilaiaaysW7caWG4bWaaSbaaSqaaiaadQgaaeqaaaGccaGL OaGaayzkaaGaeyyyIORaamiCamaabmaabaGaamiEamaaBaaaleaaca WG2baabeaaaOGaayjkaiaawMcaaiaaysW7caWGWbWaaeWaaeaacaWG 4bWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaaaa@572E@

For the components x v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWG2baabeaaaaa@383D@ , v= 1,k ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODaiabg2 da9maanaaabaGaaGymaiaaykW7caGGSaGaaGjbVlaadUgaaaaaaa@3D9E@ , x j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGQbaabeaaaaa@3831@ , j= 1,k ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaiabg2 da9maanaaabaGaaGymaiaaykW7caGGSaGaaGjbVlaadUgaaaaaaa@3D92@ , v>j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODaiabg6 da+iaadQgaaaa@390B@ , to form the sets of the independent random variables x t = x v ,v I t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaabm aabaGaamiDaaGaayjkaiaawMcaaiabg2da9maabmaabaGaamiEamaa BaaaleaacaWG2baabeaakiaaykW7caGGSaGaaGjbVlaadAhacqGHii IZcaWGjbWaaSbaaSqaaiaadshaaeqaaaGccaGLOaGaayzkaaaaaa@4699@ , t= 1,m ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 da9maanaaabaGaaGymaiaaykW7caGGSaGaaGjbVlaad2gaaaaaaa@3D9E@ . The m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@370B@  number of sets of components of the random variable x is unknown, and I t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWG0baabeaaaaa@380C@  is a set of component numbers that make up the set x t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaabm aabaGaamiDaaGaayjkaiaawMcaaaaa@3998@ .

The proposed methodology is based on performing the following steps:

  1. In accordance with the above recommendations, to test the H vj MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWG2bGaaGPaVlaadQgaaeqaaaaa@3A87@  hypotheses for each pair of the components x v , x j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaadAhaaeqaaOGaaGPaVlaacYcacaaMe8UaamiE amaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3FBA@  of the multivariate random variable x= x v ,v= 1,k ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9maabmaabaGaamiEamaaBaaaleaacaWG2baabeaakiaaykW7caGG SaGaaGjbVlaadAhacqGH9aqpdaqdaaqaaiaaigdacaaMc8Uaaiilai aaysW7caWGRbaaaaGaayjkaiaawMcaaaaa@4720@ . The number of such pairs corresponds to the value k k1 /2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGRbWaaeWaaeaacaWGRbGaeyOeI0IaaGymaaGaayjkaiaawMcaaaqa aiaaikdaaaaaaa@3BFC@ .
  2. Based on the results of step 1, construct an information graph G X,A MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaabm aabaGaamiwaiaaykW7caGGSaGaaGjbVlaadgeaaiaawIcacaGLPaaa aaa@3DD9@ , where X MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@36F6@  is a set of its vertices corresponding to the components of the random variable x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@3716@ , and A MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36DF@  is a set of edges. Between the two vertices x v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWG2baabeaaaaa@383D@ , x j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGQbaabeaaaaa@3831@  there is an edge if the H vj MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWG2bGaaGPaVlaadQgaaeqaaaaa@3A87@  hypothesis is satisfied, i.e. the components x v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWG2baabeaaaaa@383D@ , x j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGQbaabeaaaaa@3831@  are independent.
  3. Analyse the information graph G X,A MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaabm aabaGaamiwaiaaykW7caGGSaGaaGjbVlaadgeaaiaawIcacaGLPaaa aaa@3DD9@  and determine its complete subgraphs G X t , A t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaabm aabaGaamiwamaaBaaaleaacaWG0baabeaakiaaykW7caGGSaGaaGjb VlaadgeadaWgaaWcbaGaamiDaaqabaaakiaawIcacaGLPaaaaaa@4037@ , t= 1,m ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 da9maanaaabaGaaGymaiaaykW7caGGSaGaaGjbVlaad2gaaaaaaa@3D9E@ . Each vertice of the subgraph G X t , A t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaabm aabaGaamiwamaaBaaaleaacaWG0baabeaakiaaykW7caGGSaGaaGjb VlaadgeadaWgaaWcbaGaamiDaaqabaaakiaawIcacaGLPaaaaaa@4037@  has an edge if the components of the random variable x are independent. Detect complete subgraphs using algorithms for cutting the original graph, which are based on analysing its adjacency matrix. The components x v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWG2baabeaaaaa@383D@ , v I t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODaiabgI GiolaadMeadaWgaaWcbaGaamiDaaqabaaaaa@3A8B@  correwsponding to the vertices of the complete subgraph G X t , A t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4ramaabm aabaGaamiwamaaBaaaleaacaWG0baabeaakiaaykW7caGGSaGaaGjb VlaadgeadaWgaaWcbaGaamiDaaqabaaakiaawIcacaGLPaaaaaa@4037@  form a set of independent random variables.

Modification of the method of testing the hypothesis of independence of random variables in conditions of large volumes of statistical data

With large n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@370C@  volumes of the statistical data V= x 1 i , x 2 i ,i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2 da9maabmaabaGaamiEamaaDaaaleaacaaIXaaabaGaamyAaaaakiaa ykW7caGGSaGaaGjbVlaadIhadaqhaaWcbaGaaGOmaaqaaiaadMgaaa GccaaMc8UaaiilaiaaysW7caWGPbGaeyypa0Zaa0aaaeaacaaIXaGa aGPaVlaacYcacaaMe8UaamOBaaaaaiaawIcacaGLPaaaaaa@4E49@  regression estimates of probability densities p ¯ x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYca caaMe8UaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaa aa@4054@ , p ¯ x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaaaaa@3A9D@ , p ¯ x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaaaaa@3A9E@  are used in the proposed methodology. These estimates are based on the compression of the original information, e.g., V 1 = x 1 i ,i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaaIXaaabeaakiabg2da9maabmaabaGaamiEamaaDaaaleaa caaIXaaabaGaamyAaaaakiaaykW7caGGSaGaaGjbVlaadMgacqGH9a qpdaqdaaqaaiaaigdacaaMc8UaaiilaiaaysW7caWGUbaaaaGaayjk aiaawMcaaaaa@4894@  into the data array V ¯ 1 = p ¯ 1 j , z j ,j= 1,N ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOvayaara WaaSbaaSqaaiaaigdaaeqaaOGaeyypa0ZaaeWaaeaaceWGWbGbaeba daqhaaWcbaGaaGymaaqaaiaadQgaaaGccaaMc8UaaiilaiaaysW7ca WG6bWaaWbaaSqabeaacaWGQbaaaOGaaGPaVlaacYcacaaMe8UaamOA aiabg2da9maanaaabaGaaGymaiaaykW7caGGSaGaaGjbVlaad6eaaa aacaGLOaGaayzkaaaaaa@4E8B@  by decomposing the area of values x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37FD@  into N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36EC@  intervals. Here z j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOEamaaCa aaleqabaGaamOAaaaaaaa@3834@  are centres of sampling intervals of values x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37FD@ , and p ¯ 1 j = P ¯ 1 j /Δ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara Waa0baaSqaaiaaigdaaeaacaWGQbaaaOGaeyypa0ZaaSGbaeaaceWG qbGbaebadaqhaaWcbaGaaGymaaqaaiaadQgaaaaakeaacqqHuoaraa aaaa@3E57@  is probability density estimation in the j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@3708@  th interval; Δ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa@377F@  is a sampling interval length; P ¯ 1 j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiuayaara Waa0baaSqaaiaaigdaaeaacaWGQbaaaaaa@38DD@  is frequency of occurrence of the x 1 i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaDa aaleaacaaIXaaabaGaamyAaaaaaaa@38EC@  values from the V 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaaIXaaabeaaaaa@37DB@  sample in the interval numbered j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@3708@ . Then the regression estimate of the probability density function p x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaaa @3A85@  according to V ¯ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOvayaara WaaSbaaSqaaiaaigdaaeqaaaaa@37F3@  has the form [17; 18]

p ¯ x 1 = 1 с 1 j=1 N P ¯ 1 j Φ x 1 z j c 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamyqemaaBaaaleaacaaIXa aabeaaaaGcdaaeWbqaaiqadcfagaqeamaaDaaaleaacaaIXaaabaGa amOAaaaakiabfA6agnaabmaabaWaaSaaaeaacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaeyOeI0IaamOEamaaCaaaleqabaGaamOAaaaaaOqa aiaadogadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOaGaayzkaaaale aacaWGQbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa@50A8@ .

The proposed approach allows reducing by orders of magnitude the n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@370C@  volume of initial statistical information when estimating probability densities. The peculiarity of the statistics of the p ¯ x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaaaaa@3A9D@  type allows simplifying considerably the choice of coefficients of с MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqeaaa@36C2@  blurring of nuclear functions in the p ¯ x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiCayaara WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaaaaa@3A9D@  statistics from the condition of minimum criterion

1 N i=1 N p ¯ 1 i p ¯ x 1 i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaamOtaaaadaaeWbqaamaabmaabaGabmiCayaaraWaa0ba aSqaaiaaigdaaeaacaWGPbaaaOGaeyOeI0IabmiCayaaraWaaeWaae aacaWG4bWaa0baaSqaaiaaigdaaeaacaWGPbaaaaGccaGLOaGaayzk aaaacaGLOaGaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6 eaa0GaeyyeIuoaaaa@4851@ .

By analogy the estimation of the probability densities p x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaa @3A86@ , p x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm aabaGaamiEamaaBaaaleaacaaIXaaabeaakiaaykW7caGGSaGaaGjb VlaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@403C@  is carried out. Regression estimates of probability densities are used in testing the hypothesis of independence of random variables according to the proposed methodology.

Analysing the results of the computational experiment

The effectiveness of the proposed method of testing the hypothesis of independence of two-dimensional random variables and Pearson's criterion in the conditions of ambiguous dependences at different volumes of statistical data has been compared [19 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 21]. The sensors of random variables x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37FD@ , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@37FE@  were formed on the basis of the uniform distribution law x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37FD@ , which was used in the calculation of the values of x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@37FE@  in the form of nonlinear transformations x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37FD@ . At the same time the values of x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@37FE@  were superimposed with disturbances with the normal distribution law, which has zero mathematical expectation and standard deviation σ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@37DC@ . An example of the values of random variables x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37FD@  and x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@37FE@  is shown in Fig. 1.

 

Рис. 1. Значения случайных величин x1x2 из выборки исходных статистических данных V при n = 500 и σ = 0,5 (темные точки), а при σ = 2 (серые точки) при использовании зависимостей различной сложности

Fig. 1. Values x1x2 of random variables from a sample of initial statistical data V at n = 500 and σ = 0.5 (dark dots), and at σ = 2 (grey dots) when using dependencies of varying complexity

 

When testing the independence hypothesis of a two-dimensional random component based on the Pearson criterion, the results of the optimal selection of the number of sampling intervals are used [22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 24]

N * = 3 4 Δ 1 Δ 2 p x 1 , x 2 2 n 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtamaaCa aaleqabaGaaiOkaaaakiabg2da9maabmaabaWaaSaaaeaacaaIZaaa baGaaGinaaaacqqHuoardaWgaaWcbaGaaGymaaqabaGccqqHuoarda WgaaWcbaGaaGOmaaqabaGcdaqbdaqaaiaadchadaqadaqaaiaadIha daWgaaWcbaGaaGymaaqabaGccaGGSaGaaGjbVlaadIhadaWgaaWcba GaaGOmaaqabaaakiaawIcacaGLPaaaaiaawMa7caGLkWoadaahaaWc beqaaiaaikdaaaGccaWGUbaacaGLOaGaayzkaaWaaWbaaSqabeaada WcgaqaaiaaigdaaeaacaaIYaaaaaaaaaa@4FF9@ .

The value p x 1 , x 2 2 = p 2 x 1 , x 2 d x 1 d x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca WGWbWaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaa ysW7caWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaca GLjWUaayPcSdWaaWbaaSqabeaacaaIYaaaaOGaeyypa0Zaa8qCaeaa daWdXbqaaiaadchadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaadI hadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaGjbVlaadIhadaWgaaWc baGaaGOmaaqabaaakiaawIcacaGLPaaacaaMc8UaamizaiaadIhada WgaaWcbaGaaGymaaqabaGccaaMc8UaamizaiaadIhadaWgaaWcbaGa aGOmaaqabaaabaGaeyOeI0IaeyOhIukabaGaeyOhIukaniabgUIiYd aaleaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIipaaaa@627C@ , and Δ v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadAhaaeqaaaaa@38A6@  is the length of the interval between values of the random value x v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWG2baabeaaaaa@383D@ , v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODaaaa@3714@  = 1.2. The works [25 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 27] are devoted to the traditional formulas of discretization of the range of values of random quantities.

By the results of computational experiment the offered methodology and Pearson's criterion at the analysis of ambiguous dependences between random variables in conditions of relatively small volumes of statistical data and mean square deviations σ of interferences are comparable and unmistakably determine dependence of random variables. This conclusion does not hold for the dependence between random variables (Fig. 1, a), when the Pearson criterion does not establish dependence under the conditions n = 100 and σ  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaqcLbwaqa aaaaaaaaWdbiab=HGiodaa@386E@  [0.5; 2]. As σ increases, the efficiency of the criteria being compared decreases. This fact is explained by the peculiarities of ambiguous dependences and large values of σ, when the area of definition of random variables hides the desired dependence. With the increase in the n volume of initial data the efficiency of the compared criteria for testing the hypothesis of independence of random variables increases. This conclusion is expected, since asymptotic properties of nonparametric estimates of probability densities and frequencies of occurrence of random variables in their two-dimensional intervals rise as n increases. The advantage of the proposed methodology for testing the hypothesis of independence of random variables is observed at small values of σ, limited and large n. At large n and σ, the advantage of Pearson's criterion is often revealed if the procedure of optimal discretisation of the area of values of a two-dimensional random variable is used [22].

Application of the proposed methodology in analysing remote sensing data

The developed methodology was tested when analysing the remote sensing data [2; 28]. The object of the study is anthropogenic territories (quarry, suburban development) in the vicinity of the city of Krasnoyarsk. The initial information was formed on the fragments of Sentinel-2 satellite imagery on 26.08.2021 (Fig. 2). The spectral channels x j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGQbaabeaaaaa@3831@ , j= 1,9 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaiabg2 da9maanaaabaGaaGymaiaaykW7caGGSaGaaGjbVlaaiMdaaaaaaa@3D65@  were used. These channels are characterised by wavelengths (nanometres): x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37FD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  (458 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 523), x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaaaaa@37FE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  (543 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 578), x 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIZaaabeaaaaa@37FF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  (650 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 680), x 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaI0aaabeaaaaa@3800@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  (698 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 713), x 5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaI1aaabeaaaaa@3801@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  (733 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 748), x 6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaI2aaabeaaaaa@3802@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  (773 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 793), x 7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaI3aaabeaaaaa@3803@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  (785 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 899), x 8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaI4aaabeaaaaa@3804@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  (1565 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 1655), x 9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaI5aaabeaaaaa@3805@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  (2100 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 2280).

 

Рис. 2. Фрагменты спутниковой съемки Sentinel-2. Антропогенные территории:

a MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbtaqa aaaaaaaaWdbiaa=nbiaaa@3775@  карьер; b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbtaqa aaaaaaaaWdbiaa=nbiaaa@3775@  пригородная застройка

Fig. 2. Fragments of Sentinel-2 satellite imagery. Anthropogenic territories:

a MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbtaqa aaaaaaaaWdbiaa=nbiaaa@3775@  quarry; b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbtaqa aaaaaaaaWdbiaa=nbiaaa@3775@  suburban development

 

The proposed methodology allows forming pairs of independent and dependent random variables by changing the ratio between their parameters. The application of the methodology allowed us to detect 31 and 29 pairs of spectral features with strong linear dependence for the objects ‘quarry’ and ‘suburban development’, respectively. The obtained results are presented in Fig. 3.

 

Рис. 3. Иллюстрация сильной линейной зависимости между парами спектральных признаков (xi, xj), характеризующихся оценками коэффициентов корреляции больше 0,9:

a MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbtaqa aaaaaaaaWdbiaa=nbiaaa@3775@  карьер; b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbtaqa aaaaaaaaWdbiaa=nbiaaa@3775@  пригородная застройка

Fig. 3. Illustration of a strong linear relationship between pairs of spectral features (xi, xj) characterized by correlation coefficient estimates greater than 0.9:

a MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbtaqa aaaaaaaaWdbiaa=nbiaaa@3775@  quarry; b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbtaqa aaaaaaaaWdbiaa=nbiaaa@3775@  suburban development

 

Additionally, non-linear dependences between spectral features were found for the object ‘quarry’

x 1 , x 9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYcacaaMe8UaamiE amaaBaaaleaacaaI5aaabeaaaOGaayjkaiaawMcaaaaa@3F4E@ , x 1 , x 8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYcacaaMe8UaamiE amaaBaaaleaacaaI4aaabeaaaOGaayjkaiaawMcaaaaa@3F4D@ , x 1 , x 7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYcacaaMe8UaamiE amaaBaaaleaacaaI3aaabeaaaOGaayjkaiaawMcaaaaa@3F4C@ , x 1 , x 5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYcacaaMe8UaamiE amaaBaaaleaacaaI1aaabeaaaOGaayjkaiaawMcaaaaa@3F4A@ , x 1 , x 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYcacaaMe8UaamiE amaaBaaaleaacaaI0aaabeaaaOGaayjkaiaawMcaaaaa@3F49@

and the object ‘suburban development’

x 7 , x 9 , x 4 , x 9 , x 3 , x 9 , x 2 , x 9 , x 1 , x 9 , x 1 , x 8 , x 1 , x 7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaaiEdaaeqaaOGaaGPaVlaacYcacaaMe8UaamiE amaaBaaaleaacaaI5aaabeaaaOGaayjkaiaawMcaaiaaykW7caGGSa GaaGjbVpaabmaabaGaamiEamaaBaaaleaacaaI0aaabeaakiaaykW7 caGGSaGaaGjbVlaadIhadaWgaaWcbaGaaGyoaaqabaaakiaawIcaca GLPaaacaaMc8UaaiilaiaaysW7daqadaqaaiaadIhadaWgaaWcbaGa aG4maaqabaGccaaMc8UaaiilaiaaysW7caWG4bWaaSbaaSqaaiaaiM daaeqaaaGccaGLOaGaayzkaaGaaGPaVlaacYcacaaMe8+aaeWaaeaa caWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVlaacYcacaaMe8Uaam iEamaaBaaaleaacaaI5aaabeaaaOGaayjkaiaawMcaaiaaykW7caGG SaGaaGjbVpaabmaabaGaamiEamaaBaaaleaacaaIXaaabeaakiaayk W7caGGSaGaaGjbVlaadIhadaWgaaWcbaGaaGyoaaqabaaakiaawIca caGLPaaacaaMc8UaaiilaiaaysW7daqadaqaaiaadIhadaWgaaWcba GaaGymaaqabaGccaaMc8UaaiilaiaaysW7caWG4bWaaSbaaSqaaiaa iIdaaeqaaaGccaGLOaGaayzkaaGaaGPaVlaacYcacaaMe8+aaeWaae aacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacYcacaaMe8Ua amiEamaaBaaaleaacaaI3aaabeaaaOGaayjkaiaawMcaaaaa@8D45@ .

The obtained results are reliable for all pairs of spectral features, since the condition ρ ¯ 1 ρ ¯ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacu aHbpGCgaqeamaaBaaaleaacaaIXaaabeaakiabgkHiTiqbeg8aYzaa raWaaSbaaSqaaiaaikdaaeqaaaGccaGLhWUaayjcSdaaaa@3FBB@  > D β MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacqaHYoGyaeqaaaaa@38AF@  is met at D β MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacqaHYoGyaeqaaaaa@38AF@  = 0.029 and the risk β MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@37BA@  = 0.025 reject the H 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIWaaabeaaaaa@37CC@  hypothesis of equality of values ρ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaigdaaeqaaaaa@38C0@ , ρ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaikdaaeqaaaaa@38C1@ .

The problem of detecting anthropogenic areas from spectral data is considered. The error of their recognition in the space of spectral features x= x j ,j= 1,9 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9maabmaabaGaamiEamaaBaaaleaacaWGQbaabeaakiaaykW7caGG SaGaaGjbVlaadQgacqGH9aqpdaqdaaqaaiaaigdacaaMc8Uaaiilai aaysW7caaI5aaaaaGaayjkaiaawMcaaaaa@46DB@  based on the training sample V= x i ,σ i ,i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2 da9maabmaabaGaamiEamaaCaaaleqabaGaamyAaaaakiaaykW7caGG SaGaaGjbVlabeo8aZnaabmaabaGaamyAaaGaayjkaiaawMcaaiaayk W7caGGSaGaaGjbVlaadMgacqGH9aqpdaqdaaqaaiaaigdacaaMc8Ua aiilaiaaysW7caWGUbaaaaGaayjkaiaawMcaaaaa@4EEA@  is equal to 0.012, where n= n 1 + n 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2 da9iaad6gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGUbWaaSba aSqaaiaaikdaaeqaaaaa@3CB3@ , n 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaaaaa@37F3@  = 3377 (‘quarry’, σ i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aae WaaeaacaWGPbaacaGLOaGaayzkaaaaaa@3A53@  = 1), n 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaaaaa@37F4@  = 5049 (‘Suburban Development’ σ i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aae WaaeaacaWGPbaacaGLOaGaayzkaaaaaa@3A53@  = 2). When excluding from the training sample, for example, the spectral features x 4 , x 5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaaisdaaeqaaOGaaGPaVlaacYcacaaMe8UaamiE amaaBaaaleaacaaI1aaabeaaaOGaayjkaiaawMcaaaaa@3F4D@ , x 5 , x 6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaaiwdaaeqaaOGaaGPaVlaacYcacaaMe8UaamiE amaaBaaaleaacaaI2aaabeaaaOGaayjkaiaawMcaaaaa@3F4F@ , x 4 , x 5 , x 6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaSbaaSqaaiaaisdaaeqaaOGaaGPaVlaacYcacaaMe8UaamiE amaaBaaaleaacaaI1aaabeaakiaaykW7caGGSaGaaGjbVlaadIhada WgaaWcbaGaaGOnaaqabaaakiaawIcacaGLPaaaaaa@4508@  the estimates of pattern recognition errors correspond to the values 0.011; 0.01; 0.008. The obtained reduction in pattern recognition errors is not reliable compared to the error estimate in feature space x j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGQbaabeaaaaa@3831@ , j= 1,9 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaiabg2 da9maanaaabaGaaGymaiaaykW7caGGSaGaaGjbVlaaiMdaaaaaaa@3D65@ . Nevertheless, the obtained result justifies the possibility of reducing spectral features in the synthesis of decision-making algorithms and simplifying their optimisation.

Conclusion

The methodology of testing the hypothesis of independence of pairs of random variables, based on the use of nonparametric algorithm of pattern recognition, allows bypassing the problem of discretisation of the area of the values of random variables into multidimensional intervals. This problem is inherent in the generally recognised Pearson criterion. The conditions of competence of the proposed method and Pearson's criterion in the analysis of unambiguous and ambiguous dependences between random variables are determined. Using the apparatus of graph theory, the proposed method is developed in the formation of sets of independent random variables. The obtained results are generalised in testing the hypothesis of independence of random variables for large volumes of statistical data on the basis of compression of initial information, which allows increasing by orders of magnitude the computational efficiency of the problems being solved. The effectiveness of the proposed methodology is confirmed when analysing remote sensing data of anthropogenic territories and assessing their states. In the presence of a set of spectral features characterised by a strong linear dependence between its pairs, it is possible to reduce the number of spectral features in the recognition of anthropogenic territories with a decrease in the estimate of the probability of error in their recognition.

×

作者简介

Anna Sharueva

Reshetnev Siberian State University of Science and Technology

编辑信件的主要联系方式.
Email: anna-denisyuk@yandex.ru
ORCID iD: 0009-0003-4255-4554

head of the remote sensing laboratory, assistant

俄罗斯联邦, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037

参考

  1. Sinitsyna I. N. Akademik Pugachev Vladimir Semenovich: k stoletiyu so dnya rozhdeniya [Academician Vladimir Semenovich Pugachev: on the centenary of his birth]. Moscow, Torus Press Publ., 2011, 376 p.
  2. Sharueva A. V., Lapko A. V., Lapko V. A. Neparametricheskiye metody proverki gipotez o raspredeleniyakh sluchaynykh velichin pri analize dannykh distantsionnogo zondirovaniya [Nonparametric methods for testing hypotheses about distributions of random variables in the analysis of remote sensing data]. Novosibirsk, SO RAN Publ., 2024, 189 p.
  3. Lapko A. V., Lapko V. A. Testing the Hypothesis of the Independence of Two-Dimensional Random Variables Using a Nonparametric Algorithm for Pattern Recognition. Optoelectronics, Instrumentation and Data Processing. 2021, Vol. 57, No. 2, P. 149–155.
  4. Lapko A. V., Lapko V. A., Bakhtina A. V. Study of the Method for Verification of the Hypothesis on Independence of Two-Dimensional Random Quantities Using a Nonparametric Classifier. Optoelectronics, Instrumentation and Data Processing. 2022, Vol. 57, No. 6, P. 639–648.
  5. Parzen E. On estimation of a probability density function and mode. Annals of Mathematical Statistics. 1962, Vol. 33, Nо. 3, P. 1065-1076.
  6. Epanechnikov V. A. [Non-parametric estimation of a multivariate probability density]. Theory of Probability & Its Applications. 1969, Vol. 14, No. 1, P. 156–161 (In Russ.).
  7. Lapko A. V., Lapko V. A. Analysis of optimization methods for nonparametric estimation of the probability density with respect to the blur factor of kernel functions. Measurement Techniques. 2017, Vol. 60, No. 6, P. 515–522.
  8. Lapko A. V., Lapko V. A. Yadernye otsenki plotnosti veroyatnosti i ikh primenenie [Kernel probability density estimates and their applications]. Krasnoyarsk, SibGU im. M.F. Reshetnev Publ., 2021, 208 p.
  9. Rudemo M. Empirical choice of histogram and kernel density estimators. Scandinavian Journal of Statistics. 1982, No. 9, P. 65–78.
  10. Bowman A. W. A comparative study of some kernel-based non-parametric density estimators. Journal of Statistical Computation and Simulation. 1982, Vol. 21, P. 313–327.
  11. Hall P. Large-sample optimality of least squares cross-validation in density estimation. Annals of Statistics. 1983, Vol. 11, P. 1156–1174.
  12. Sharakshane, A. S., Zheleznov I. G., Ivnitskii V. A. Slozhnye sistemy [Complex systems]. Moscow, Vysshaya Shkola Publ., 1977, 248 p.
  13. Lapko A. V., Lapko V. A., Bakhtina A. V. Formation of Sets of Independent Components of a Multidimensional Random Variable Based on a Nonparametric Pattern Recognition Algorithm. Measurement Techniques. 2021, Vol. 64, No. 9, P. 689–696.
  14. Zenkov I. V., Lapko A. V., Lapko V. A., Kiryushina E. V., Vokin V. N. Nonparametric pattern recognition algorithm for testing a hypothesis of the independence of random variables. Computer Optics. 2021, Vol. 45, No 5, P. 767–772.
  15. Zenkov I. V., Lapko A. V., Lapko V. A., Kiryushina E. V., Vokin V. N., Bakhtina A. V. A method of sequentially generating a set of components of a multidimensional random variable using a nonparametric pattern recognition algorithm. Computer Optics. 2021, Vol. 45, No. 6, P. 926–933.
  16. Lapko A. V., Lapko V. A., Sharueva A. V. Neparametricheskii algoritm raspoznavaniya obrazov v zadache formirovaniya naborov nezavisimykh sluchainykh velichin [A nonparametric pattern recognition algorithm in the problem of forming sets of independent random variables]. Informatika i sistemy upravleniya. 2024, Vol. 79, No. 1, P. 81–90 (In Russ.).
  17. Lapko A. V., Lapko V. A. Regressionnaya otsenka plotnosti veroyatnosti i ee svoistva [Regression estimation of probability density and its properties]. Sistemy upravleniya i informatsionnye tekhnologii. 2012, No. 3-1 (49), P. 152-156 (In Russ.).
  18. Lapko A. V., Lapko V. A. Regression estimate of the multidimensional probability density and its properties. Optoelectronics, Instrumentation and Data Processing. 2014, Vol. 50, No. 2, P. 148-153.
  19. Lapko A. V., Lapko V. A., Bakhtina A. V. Application of a nonparametric pattern recognition algorithm to the problem of testing the hypothesis of the independence of variables of multi-valued functions. Measurement Techniques. 2022, Vol. 65, No. 1, P. 17–23.
  20. Lapko A. V., Lapko V. A., Bakhtina A. V. Comparison of the Methodology for Hypothesis Testing of the Independence of Two-Dimensional Random Variables Based on a Nonparametric Classifier. Scientific and Technical Information Processing. 2023, Vol. 50, No. 6, P. 572–581.
  21. Lapko A. V., Lapko V. A., Bakhtina A. V. Comparison of Methods for Testing the Hypothesis of Independence of Random Variables Based on a Nonparametric Classifier and Pearson's Chi-Squared Test. Optoelectronics, Instrumentation and Data Processing, 2023, Vol. 59, No. 5, P. 551–560.
  22. Lapko A. V., Lapko V. A. Selection of the Optimal Number of Intervals Sampling the Region of Values of a Two-Dimensional Random Variable. Measurement Techniques. 2016, Vol. 59, No. 2, P. 122–126.
  23. Lapko A. V., Lapko V. A. Discretization method for the range of values of a multi-dimensional random variable. Measurement Techniques. 2019, Vol. 62, No. 1, P. 16–22.
  24. Lapko A. V., Lapko V. A. Estimation of parameters of the formula for optimal discretization of the range of values of a two-dimensional random variable. Measurement Techniques. 2018, Vol. 61, No. 5, P. 427–433.
  25. Sturges H. A. The choice of a class interval. Journal of the American Statistical Association, 1926, Vol. 21, P. 65-66.
  26. Heinhold I., Gaede K. W. Ingeniur statistic. München, Springler Verlag, 1964, 352 p.
  27. Scott D. W. Multivariate Density Estimation: Theory, Practice, and Visualization. New Jersey, John Wiley & Sons, 2015, 384 p.
  28. Lapko A. V., Lapko V. A., Bakhtina A. V. Application of a nonparametric procedure for testing the hypothesis about the independence of random variables given a large amount of statistical data. Measurement Techniques, 2024, Vol. 66, P. 744–754.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Values x1, x2 of random variables from a sample of initial statistical data V at n = 500 and σ = 0.5 (dark dots), and at σ = 2 (grey dots) when using dependencies of varying complexity

下载 (86KB)
3. Fig. 2. Fragments of Sentinel-2 satellite imagery. Anthropogenic territories: a  quarry; b  suburban development

下载 (62KB)
4. Fig. 3. Illustration of a strong linear relationship between pairs of spectral features (xi, xj) characterized by correlation coefficient estimates greater than 0.9: a  quarry; b  suburban development

下载 (45KB)

版权所有 © Sharueva A.V., 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可