Research of electromagnetic shielding properties of single-walled carbon nanotubes thin transparent films

Capa

Citar

Texto integral

Resumo

The paper presents the results of studying the shielding properties of thin transparent films in single-walled carbon nanotubes on flexible substrates of polyethylene terephthalate. The films were formed by spraying colloidal solution on single-walled carbon nanotubes. The film thickness was determined by the volume of the sprayed colloidal solution and was measured using transmission electron microscopy in a cross-section mode. The morphology and structural quality of the films were studied by electron microscopy, optical spectroscopy, and Raman spectroscopy. The results showed the high structural quality of the material. According to Raman spectroscopy, the ratio of peaks intensities G / D is 23.4, which is the evidence of a significant predominance of carbon in the sp2 hybridization. It is typical for graphite-like systems and, in particular, carbon nanotubes. The spectral dependences of the transmission and reflection coefficients of radio waves in the K range of 18–26.5 GHz were studied. Absorption of radiation is the dominant shielding mechanism. Increasing the film thickness from 15.9 to 56.1 nm is accompanied by decreasing the surface resistance from 971 to 226 Ohm / sq, while optical transparency decreases from 93.58 to 76.71 %. Shielding efficiency increases from 2.29 to 6.6 dB, increasing the proportion of absorbed radiation from 34.6 to 51.2 % at a frequency of 18 GHz. This indicates the prospects for the use of films as electromagnetic shielding and anti-icing coatings in the aerospace industry.

Sobre autores

Anton Voronin

Krasnoyarsk Scientific Center of the SB RAS

Autor responsável pela correspondência
Email: a.voronin1988@mail.ru

Ph. D., reseacher Department of Molecular Electronics

Rússia, 50, Akademgorodok, Krasnoyarsk, 660036

Yurii Fadeev

Krasnoyarsk Scientific Center of the SB RAS

Email: a.voronin1988@mail.ru

junior researcher Department of Molecular Electronics

Ruanda, 50, Akademgorodok, Krasnoyarsk, 660036

Mikhail Simunin

Krasnoyarsk Scientific Center of the SB RAS; Siberian Federal University

Email: a.voronin1988@mail.ru

Ph. D, researcher Department of Molecular Electronics

Rússia, 50, Akademgorodok, Krasnoyarsk, 660036; 79, Svobodny Av., Krasnoyarsk, 660041

Ivan Podshivalov

Institute of Physics named after L.V. Kirensky

Email: a.voronin1988@mail.ru

junior researcher Laboratory of Scientific Instrumentation

Rússia, 50, Akademgorodok, Krasnoyarsk, 660036

Stanislav Khartov

Krasnoyarsk Scientific Center of the SB RAS

Email: a.voronin1988@mail.ru

Ph. D, Senior Researcher Department of Molecular Electronics

Rússia, 50, Akademgorodok, Krasnoyarsk, 660036

Bibliografia

  1. Zhu M., Xiong C., Lee Q. Research on ITO transparent electromagnetic shielding coatings for E-O system. Proc. of SPIE. 2009, Vol. 6722, P. 1–7.
  2. Choi Y.-J., Gong S. C., Johnson D. C. et al. Characteristics of the electromagnetic interference shielding effectiveness of Aldoped ZnO thin films deposited by atomic layer deposition. Applied Surface Science. 2013, Vol. 269, P. 92–97.
  3. Xu H., Anlage S. M., Hu L., Gruner G. Microwave shielding of transparent and conducting single-walled carbon nanotube films. Applied Physics Letters. 2007, Vol. 90, P. 183119.
  4. Hong S. K., Kim K. Y., Kim T. Y. et al. Electromagnetic interference shielding effectiveness of monolayer grapheme. Nanotechnology. 2012, Vol. 23, P. 455704.
  5. Zhang H.-L., Xia Y., Gai J.-G. Ultrathin Active Layer for Transparent Electromagnetic Shielding Window. ACS Omega. 2018, Vol. 3, P. 2765–2772.
  6. Electromagnetic Interference (EMI) Transparent Shielding of Reduced Graphene Oxide (RGO) Interleaved Structure Fabricated by Electrophoretic Deposition / S. Kim, J.-S. Oh, M.-G. Kim et al. // ACS Appl. Mater. Interfaces. 2014, Vol. 620, P. 17647–17653.
  7. Kim B. R., Lee H. K., Kim E., Lee S. H. et al. Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyanilinecoated transparent thin films // Synthetic Metals. 2010, Vol. 160, P. 1838–1842.
  8. Voronin A. S., Simunin M. M., Ivanchenko F. S. et al. Preparation and Investigation of Composite Transparent Electrodes of Poly (3, 4-ethylenedioxythiophene) Polystyrene Sulfonate/Single-Wall Carbon Nanotubes. Technical Physics Letters. 2017, Vol. 43, No. 9, Р. 783–786.
  9. Tambasov I. A., Voronin A. S., Evsevskaya N. P. et al. Structural and Thermoelectric Properties of Optically Transparent Thin Films Based on Single-Walled Carbon Nanotubes. Physics of the Solid State. 2018, Vol. 60, No. 12, P. 2649–2655.
  10. Volochaev M. N., Komogortsev S. V., Myagkov V. G. et al. Structural and Magnetic Characteristics of Nanogranular Co–Al2O3 Single- and Multilayer Films Formed by the Solid-State Synthesis. Physics of the Solid State. 2018, Vol. 60, No. 7, P. 1425–1431.
  11. Wu Z., Chen Z., Du X., J. M. Logan et al. Transparent, conductive carbon nanotube films. Science. 2004, Vol. 305, No. 5688, P.1273–1276.
  12. Dresselhaus M. S., Dresselhaus G., Saito R., Jorio A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, Vol. 409, No. 2, P. 47–99.
  13. Chortos A., Pochorovski I., Lin P. et al. Universal Selective Dispersion of Semiconducting Carbon Nanotubes from Commercial Sources Using a Supramolecular Polymer. ACS Nano. 2017, Vol. 11, P. 5660–5669.
  14. Wan Y.-J., Zhu P.-L., Yu S.-H. et al. Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy. Carbon. 2017, Vol. 122, P. 74–81.
  15. Hecht D. S., Hu L. B., Irvin G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 2011, Vol. 23, P. 1482–1513.
  16. Brownlie L., Shapter J. Advances in carbon nanotube n-type doping: Methods, analysis and applications. Carbon. 2018, Vol. 126, P. 257–270.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Voronin A.S., Fadeev Y.V., Simunin M.M., Podshivalov I.V., Khartov S.V., 2019

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies