Selection of design parameters of active-reactive type penetrating projectiles for movement in the ground

封面

如何引用文章

详细

The aim of the work is the calculation and experimental substantiation of the expediency of using (both on Earth and on the surface of other planets) active-reactive type penetrator projectiles (SPART) for solving a number of scientific problems related to the formation of wells in the ground and the delivery of payloads to a certain depth. Research methods: various launch schemes (options for organizing the functioning process) of SPART are considered. The depth of penetration of an active-reactive type penetrator projectile into loam is calculated for the case when SPART is fired from a ballistic launcher located in such a way that the projectile exit velocity is equal to the velocity of its entry into the ground, and the thrust of the propulsion system is twice as great as the static resistance of the soil. From a variety of options, three SPART design schemes are selected depending on the combustion rate of the fuel used to ensure normal operation of the engine. As a result of the conducted calculation and experimental studies to determine the depth of penetration into loam of 152.4 mm penetrator projectiles 4.6 m long, launched from an artillery mount using the same powder charge weighing 18 kg, it was found that from the moment the engine is turned off until it comes to a complete stop, Lfullps=205,48 m, which is more than twice the penetration depth of the same penetrator projectile if it moved in the soil only by inertia. Conclusion: the results presented in the article can be useful for researchers, graduate students and engineers involved in the creation and operation of aviation and rocket and space technology, and can also be useful for students of technical universities studying in the relevant specialties.

全文:

Introduction

In modern human activities, there is a continual annual increase in the volume of earthworks involving the regulated disruption of soil masses.

On Earth, such operations are conducted in road and capital construction, the mining industry, geological surveying, land reclamation, civil engineering and military applications. On other planets of the Solar System, they are carried out for the purpose of subsurface exploration, borehole formation, and the delivery of payloads to specific locations within the soil medium. The labor intensity of working with soil, combined with a number of specific factors inherent in conventional technological methods, results in extremely high operational costs and significant consumption of material and human resources.

The projectiles considered in this study MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  Active-Reactive Penetrator Devices (SPART) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  belong to a class of autonomous systems capable of rapid motion through soil, forming a borehole via compaction rather than excavation. These SPART are launched from a ballistic installation using a launch tube, from which they are propelled in the desired direction by a dedicated launching mechanism. Their movement through the soil is driven both by the kinetic energy imparted during launch and by the thrust of a rocket engine that is activated during the projectile's penetration into the ground.

Schemes of SPART Deployment into Soil

Various launch schemes (i.e., operational configurations) of SPART devices are possible. It is important to note that throughout all phases of the penetrator's movement, in addition to inertial forces and engine thrust, the gravitational force of the planetary body also acts on the system. This gravitational force depends both on the gravitational acceleration MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  whose magnitude varies across different planets MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  and on the angle of entry of the penetrator into the soil. The entry angle is defined by the orientation between the SPART’s longitudinal axis and the tangent to the surface of the ground (or regolith). The gravitational force reaches its maximum when SPART enters and moves vertically through the soil. Conversely, during horizontal entry and motion, the gravitational component acting on the penetrator becomes zero.

Scheme 1. The launch tube (barrel of the launching device) of the ballistic installation can be positioned at some distance above the soil surface. Using a propelling mechanism, the SPART is ejected from the tube in the desired direction, acquiring an initial velocity upon entry into the ground. In the case where the SPART is launched from a ballistic system mounted on a descent vehicle that is approaching the surface at a certain velocity, it is necessary to account for the deceleration effect exerted on the vehicle due to the recoil force generated by the projectile launch.

The propulsion system, in turn, can be activated under different conditions:

1.1. At the moment the propelling mechanism of the ballistic launcher is triggered. In this case, the engine operates both during the projectile’s flight toward the interface between the atmosphere and the soil, and during its movement within the soil.

1.2. At the moment the penetrator enters the soil.

1.3. During its inertial movement within the soil. In both cases 1.2 and 1.3, the motion of the SPART through the ground is driven by both its kinetic energy and the thrust of the operating engine.

1.4. After the SPART comes to a complete stop during its inertial movement in the soil. In this case, the total penetration depth is composed of two segments: the initial inertial motion and the subsequent motion powered by engine thrust.

Scheme 2. The launch tube may be positioned in such a way that the penetrator's nose is in direct contact with the soil surface (impulse-driven insertion). As the propelling mechanism is activated, the SPART begins its motion into the ground due to the pressure exerted by the propellant gases.

In this case, the propulsion system may also be activated under several conditions:

2.1. Simultaneously with the activation of the propelling mechanism. In this scenario, the penetrator’s motion through the soil is driven both by the expansion of gases within the launch tube and by the thrust produced by the operating SPART engine.

2.2. During the inertial phase of motion following the activation of the propelling mechanism, when the pressure of the propellant gases in the launch tube has dropped to zero. Here, the movement through the soil is sustained by both the kinetic energy of the SPART and the thrust from its engine.

2.3. After the SPART has come to a complete stop following its inertial motion in the soil, driven initially by the kinetic energy imparted by the propellant gases. The total penetration depth in this case consists of two phases: initial motion by inertia and subsequent advancement due to engine thrust.

Regardless of the configuration of the ballistic installation relative to the soil surface and the moment of engine activation, as the SPART passes through the launch tube, it may either move without rotation or acquire rotation around its own axis, i.e., with spin, due to the pressure of the propellant gases [1].

It is evident that the penetration depth of the active-reactive type penetrator will be influenced not only by the aforementioned operational configurations, mass and dimensional parameters, and characteristics, but also by the magnitude of thrust at each moment of the engine's operation.

In particular, if the thrust of the propulsion system is less than the static resistance of the regolith, the activation of the engine should be carried out either at the moment the SPART enters the soil or during its inertial motion. After the penetrator has come to a stop, activating the engine would no longer be meaningful.

The activation of the SPART propulsion system at the moment of the propelling mechanism's activation increases both the penetrator's entry velocity into the soil and the overloads acting on the penetrator's structure and its payload.

It is also known that to achieve the maximum penetration depth of the penetrator with an operating propulsion system, it must move through the regolith at an optimal speed, which is achieved when the engine thrust exceeds the static resistance of the medium by a factor of two [2].

Below is the calculation of the penetration depth of SPART into loam for the case where the SPART is fired from a ballistic installation positioned such that the exit velocity of the projectile is equal to its entry velocity into the soil, and the engine thrust is twice the static resistance of the ground.

Calculation of SPART Penetration Depth into Loam

As a result of laboratory tests aimed at achieving the same penetration depth when launching projectiles of different masses from a ballistic installation, it was established [3] that less energy and impulse are required when using heavier projectiles. Specifically, when D ex =152.4 mm MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebWdamaaBaaaleaapeGaamyzaiaadIhaa8aabeaak8qacqGH 9aqpcaaIXaGaaGynaiaaikdacaGGUaGaaGinaiaabccacaqGTbGaae yBaaaa@408C@  projectiles were launched from a special artillery gun into naturally occurring loam, a 148 kg projectile reached a depth of L = 24 m, whereas a 612 kg projectile penetrated to a depth of L = 95 m. In both cases, the same gunpowder charge of weight ω = 18 kg was used (see table).

 

Experimental and Calculated Data on the Penetration of a 152.4 mm Diameter Projectile into Loam

Mg, kg

ω, kg

β, g

L, m

v 0 э MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkLspA0xg9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadAhadaqhaaWcbaGaaGimaaqaaiaab2ebaaaaaa@3BB7@ , m/s

v а MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkLspA0xg9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadAhadaWgaaWcbaGaamimeaqabaaaaa@3AE1@ , m/s

k θ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkLspA0xg9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadUgadaWgaaWcbaGaeqiUdehabeaaaaa@3BD3@

148

18

90

24

482

787

0.61

148

23,9

36

34

640

908

0.70

612

10

36

76

191

285

0.67

612

10

36

69

191

285

0.67

612

18

36

95

274

384

0.71

612

18

36

90

274

384

0.71

 

We will calculate the possible penetration depth of D ex =152.4 mm MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaWdbiaadwgacaWG 4baapiqabaGcpeGaeyypa0JaaGymaiaaiwdacaaIYaGaaiOlaiaais dacaqGGaGaaeyBaiaab2gaaaa@4281@  projectile described above, with a length of l = 4.6 m and a mass of Mg = 612 kg, and with the nose cone angle β= 36 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGYoGaeyypa0JaaG4maiaaiAdapaWaaWbaaSqabeaapeGaaGim aaaaaaa@3AFA@  (if applicable), assuming it is fired from a special artillery gun into naturally occurring loam. Additionally, the projectile is equipped with a solid propellant rocket engine with a fuel mass of М f =0,1Mg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiheabbaaaaaaaacXwyJTgapiWaaSbaaSqaa8qacaWGMbaapiqa baGcpeGaeyypa0JaaGimaiaacYcacaaIXaGaamytaiaadEgaaaa@3EEF@ , specific impulse of I un =2620 Ns kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaGaamyDaiaad6ga aeqaaOWdbiabg2da9iaaikdacaaI2aGaaGOmaiaaicdadaWcaaWdce aacaqGobGaae4Caaqaa8qacaqGRbGaae4zaaaaaaa@4304@ , and fuel density of ρ f =1600  kg m 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCpaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaeyypa0Ja aGymaiaaiAdacaaIWaGaaGimaiaabccadaWcaaWdaeaapeGaae4Aai aabEgaa8aabaWdbiaab2gapaWaaWbaaSqabeaapeGaae4maaaaaaaa aa@4208@ .

The natural soil used for testing is loam, into which artillery projectiles with the above-mentioned parameters were launched at various speeds.

Using the results of previous launches of these projectiles into the soil at different entry velocities, as presented in Table 1, we will substitute the values into the penetration depth equation for inertial motion

L= M g artp 2B ln F 0 +B V ent 2 F 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamitaiabg2da9maalaaaqqaaaaaaaaGqSf2yRbWdceaapeGaamyt aiaadEgapiWaaSbaaSqaa8qacaWGHbGaamOCaiaadshacaWGWbaapi qabaaakeaapeGaaGOmaiaadkeaaaGaciiBaiaac6gadaWadaWdceaa peWaaSaaa8GabaWdbiaadAeapiWaaSbaaSqaa8qacaaIWaaapiqaba GcpeGaey4kaSIaamOqaiaadAfapiWaa0baaSqaaiaadwgacaWGUbGa amiDaaqaa8qacaaIYaaaaaGcpiqaa8qacaWGgbWdcmaaBaaaleaape GaaGimaaWdceqaaaaaaOWdbiaawUfacaGLDbaaaaa@503B@  (1)

using the two values of v 0 э = V ent MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaabbaaaaaaaacXwyJTgapiWaa0baaSqaa8qacaaIWaaapiqa a8qacaWGnraaaOGaeyypa0JaamOva8GadaWgaaWcbaWdbiaadwgaca WGUbGaamiDaaWdceqaaaaa@4017@  and L from the third and fifth rows, respectively. As a result of the simultaneous solution of the system of two logarithmic equations for the unknowns F0 and B we determine

F 0 =27514.68  N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaa ikdacaaI3aGaaGynaiaaigdacaaI0aGaaiOlaiaaiAdacaaI4aGaae iiaiaacckacaqGobaaaa@41B9@  and B=11.087  Ns 2 m 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGcbGaeyypa0JaaGymaiaaigdacaGGUaGaaGimaiaaiIdacaaI 3aGaaeiiamaalaaapaqaa8qacaqGobGaae4Ca8aadaahaaWcbeqaa8 qacaqGYaaaaaGcpaqaa8qacaqGTbWdamaaCaaaleqabaWdbiaabkda aaaaaaaa@421F@

in the formula for the soil resistance to the moving penetrator [2].

To achieve the maximum penetration depth into the soil due to the thrust of the operating engine, the projectile must move at an optimal speed, determined by the formula [4] V opt = F 0 B MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGVbGaamiCaiaadshaaeqaaOGaeyypa0ZaaOaaaeaadaWc aaqaaiaadAeadaWgaaWcbaGaaGimaaqabaaakeaacaWGcbaaaaWcbe aaaaa@3DBF@  which, for the values of F0 and B calculated above, equals V opt =49.816   m s   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGwbWdamaaBaaaleaapeGaam4BaiaadchacaWG0baapaqabaGc peGaeyypa0JaaGinaiaaiMdacaGGUaGaaGioaiaaigdacaaI2aGaae iiaiaacckadaWcaaWdaeaapeGaaeyBaaWdaeaapeGaae4CaaaacaGG Gcaaaa@44FF@ .

In this case, the thrust of the propulsion system, according to the relationship R opt =2 F 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaam4BaiaadchacaWG0baaaOGaeyypa0JaaGOmaiaadAea daWgaaWcbaGaaGimaaqabaaaaa@3D7C@ , must be twice the static resistance of the soil, i.e., R opt =55029.36  N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbWdamaaCaaaleqabaWdbiaad+gacaWGWbGaamiDaaaakiab g2da9iaaiwdacaaI1aGaaGimaiaaikdacaaI5aGaaiOlaiaaiodaca aI2aGaaiiOaiaabccacaqGobaaaa@43CC@ .

Given the total impulse of the solid propellant I sum = I un M f =160344 Ns MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaWdbiaadohacaWG 1bGaamyBaaWdceqaaOWdbiabg2da9iaadMeapiWaaSbaaSqaa8qaca WG1bGaamOBaaWdceqaaOWdbiaad2eapiWaaSbaaSqaa8qacaWGMbaa piqabaGcpeGaeyypa0JaaGymaiaaiAdacaaIWaGaaG4maiaaisdaca aI0aGaaiiOaiaab6eacaqGZbaaaa@4B21@  and the known thrust R opt MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbWdamaaCaaaleqabaWdbiaad+gacaWGWbGaamiDaaaaaaa@3A3E@ , using the formula [2] T= I un M f 2 F 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbn9MBVrxEWvgid9MCZLMDHbqe e0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9fr Fj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYx e9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadiqaaqaaaOqaaiaads facqGH9aqpdaWcaaqaaiaadMeadaWgaaWcbaGaamyDaiaad6gaaeqa aOGaamytamaaBaaaleaacaWGMbaabeaaaOqaaiaaikdacaWGgbWaaS baaSqaaiaaicdaaeqaaaaaaaa@4169@ , we will determine the engine's operating time  T=2.914 s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcGaamivaiabg2da9iaaikdacaGGUaGaaGyoaiaaigdacaaI 0aGaaeiiaiaabohaaaa@3E7F@

Let us determine how the mass of the projectile with the given parameters will decrease by replacing the steel from which it is made with solid propellant, which has a lower density than steel. The volume of 61.2 kg of solid propellant is W f = M f ρ f =0.03825  m 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaWdbiaadAgaa8Ga beaak8qacqGH9aqpdaWcaaWdceaapeGaamyta8GadaWgaaWcbaWdbi aadAgaa8GabeaaaOqaa8qacqaHbpGCpiWaaSbaaSqaa8qacaWGMbaa piqabaaaaOWdbiabg2da9iaaicdacaGGUaGaaGimaiaaiodacaaI4a GaaGOmaiaaiwdacaqGGaGaaeyBa8GadaahaaWcbeqaa8qacaqGZaaa aaaa@49B5@ . Let us assume that the free volume of the solid propellant rocket engine combustion chamber is W fv =0,1 W f =0.003825  m 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaGaamOzaiaadAha aeqaaOWdbiabg2da9iaaicdacaGGSaGaaGymaiaadEfapiWaaSbaaS qaa8qacaWGMbaapiqabaGcpeGaeyypa0JaaGimaiaac6cacaaIWaGa aGimaiaaiodacaaI4aGaaGOmaiaaiwdacaqGGaGaaeyBa8Gadaahaa Wcbeqaa8qacaqGZaaaaaaa@4A24@ . The total volume of the combustion chamber is W g = W f + W fv =0.042075  m 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaWdbiaadEgaa8Ga beaak8qacqGH9aqpcaWGxbWdcmaaBaaaleaapeGaamOzaaWdceqaaO WdbiabgUcaRiaadEfapiWaaSbaaSqaa8qacaWGMbGaamODaaWdceqa aOWdbiabg2da9iaaicdacaGGUaGaaGimaiaaisdacaaIYaGaaGimai aaiEdacaaI1aGaaeiiaiaab2gapiWaaWbaaSqabeaapeGaae4maaaa aaa@4B42@ .

Assuming the density of steel is ρ st =7800 kg m 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCqqaaaaaaaaGqSf2yRbWdcmaaBaaaleaacaWGZbGaamiD aaqabaGcpeGaeyypa0JaaG4naiaaiIdacaaIWaGaaGimamaalaaapi qaa8qacaqGRbGaae4zaaWdceaapeGaaeyBa8GadaahaaWcbeqaa8qa caqGZaaaaaaaaaa@444D@ , we will calculate how much the mass of the projectile casing has decreased:

a) by considering the difference in densities between the propellant and steel ΔMg1= W f ρ st ρ f =237.15 kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHuoarcaWGnbGaam4zaiaaigdacqGH9aqpcaWGxbaeeaaaaaaa aieBHn2Aa8GadaWgaaWcbaWdbiaadAgaa8Gabeaak8qadaqadaWdce aapeGaeqyWdi3dcmaaBaaaleaacaWGZbGaamiDaaqabaGcpeGaeyOe I0IaeqyWdi3dcmaaBaaaleaapeGaamOzaaWdceqaaaGcpeGaayjkai aawMcaaiabg2da9iaaikdacaaIZaGaaG4naiaac6cacaaIXaGaaGyn aiaabccacaqGRbGaae4zaaaa@50F8@ ;

b) by considering the free volume of the combustion chamber ΔMg2= W fv ρ st =29,835 kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHuoarcaWGnbGaam4zaiaaikdacqGH9aqpcaWGxbaeeaaaaaaa aieBHn2Aa8GadaWgaaWcbaGaamOzaiaadAhaaeqaaOWdbiabeg8aY9 GadaWgaaWcbaGaam4CaiaadshaaeqaaOWdbiabg2da9iaaikdacaaI 5aGaaiilaiaaiIdacaaIZaGaaGynaiaabccacaqGRbGaae4zaaaa@4C20@ ;

c) the total decrease in mass ΔMg=ΔMg1+ΔMg2=266,985 kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHuoarcaWGnbGaam4zaiabg2da9iabgs5aejaad2eacaWGNbGa aGymaiabgUcaRiabgs5aejaad2eacaWGNbGaaGOmaiabg2da9iaaik dacaaI2aGaaGOnaiaacYcacaaI5aGaaGioaiaaiwdacaqGGaGaae4A aiaabEgaaaa@4BB8@ .

The mass of SPART will be 267 kg less than the mass of a projectile of the same size, but made of steel and used in the experiment, i. e., M g artp =345 kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbGaam4zaabbaaaaaaaacXwyJTgapiWaaSbaaSqaa8qacaWG HbGaamOCaiaadshacaWGWbaapiqabaGcpeGaeyypa0JaaG4maiaais dacaaI1aGaaeiiaiaabUgacaqGNbaaaa@43E6@ .

Given the use of the aforementioned artillery system with identical powder charges ω = 18 kg, the entry velocity of SPART with a mass of M g artp =345 kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbGaam4zaabbaaaaaaaacXwyJTgapiWaaSbaaSqaa8qacaWG HbGaamOCaiaadshacaWGWbaapiqabaGcpeGaeyypa0JaaG4maiaais dacaaI1aGaaeiiaiaabUgacaqGNbaaaa@43E6@  will be v 0 =365  m s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG2bWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaa iodacaaI2aGaaGynaiaabccadaWccaWdaeaapeGaaeyBaaWdaeaape Gaae4Caaaaaaa@3E7D@ , while for a projectile with a mass of Mg=612 kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbGaam4zaiabg2da9iaaiAdacaaIXaGaaGOmaiaabccacaqG RbGaae4zaaaa@3DAF@ , the entry velocity will be v 0 =274  m s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG2bWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaa ikdacaaI3aGaaGinaiaabccadaWccaWdaeaapeGaaeyBaaWdaeaape Gaae4Caaaaaaa@3E7C@ . The penetration depth of the projectile with a mass of Mg=612 kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbGaam4zaiabg2da9iaaiAdacaaIXaGaaGOmaiaabccacaqG RbGaae4zaaaa@3DAF@  into the soil by inertia is L full =95 m, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaWdbiaadAgacaWG 1bGaamiBaiaadYgaa8Gabeaak8qacqGH9aqpcaaI5aGaaGynaiaabc cacaqGTbGaaiilaaaa@4205@  while for a projectile with a mass of M g artp =345 kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbGaam4zaabbaaaaaaaacXwyJTgapiWaaSbaaSqaa8qacaWG HbGaamOCaiaadshacaWGWbaapiqabaGcpeGaeyypa0JaaG4maiaais dacaaI1aGaaeiiaiaabUgacaqGNbaaaa@43E6@ , if it were to move through the soil solely by inertia, the penetration depth would be L full =62.26 m. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaWdbiaadAgacaWG 1bGaamiBaiaadYgaa8Gabeaak8qacqGH9aqpcaaI2aGaaGOmaiaac6 cacaaIYaGaaGOnaiaabccacaqGTbGaaiOlaaaa@442F@

To achieve maximum penetration into the soil due to the thrust of the operating engine, the SPART propulsion system must be activated at a depth of:

L V opt = M g artp 2B ln F 0 +B V ent 2 F 0 +B V opt 2 =51.42 m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaWdbiaadAfapiWa aSbaaWqaa8qacaWGVbGaamiCaiaadshaa8GabeaaaSqabaGcpeGaey ypa0ZaaSaaa8GabaWdbiaad2eacaWGNbWdcmaaBaaaleaapeGaamyy aiaadkhacaWG0bGaamiCaaWdceqaaaGcbaWdbiaaikdacaWGcbaaai GacYgacaGGUbWaamWaa8GabaWdbmaalaaapiqaa8qacaWGgbWdcmaa BaaaleaapeGaaGimaaWdceqaaOWdbiabgUcaRiaadkeacaWGwbWdcm aaDaaaleaacaWGLbGaamOBaiaadshaaeaapeGaaGOmaaaaaOWdceaa peGaamOra8GadaWgaaWcbaWdbiaaicdaa8Gabeaak8qacqGHRaWkca WGcbGaamOva8GadaqhaaWcbaWdbiaad+gacaWGWbGaamiDaaWdceaa peGaaGOmaaaaaaaakiaawUfacaGLDbaacqGH9aqpcaaI1aGaaGymai aac6cacaaI0aGaaGOmaiaabccacaqGTbaaaa@61CF@  at which the velocity of the projectile, moving by inertia, decreases to: V opt =49.816   m s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGwbWdamaaBaaaleaapeGaam4BaiaadchacaWG0baapaqabaGc peGaeyypa0JaaGinaiaaiMdacaGGUaGaaGioaiaaigdacaaI2aGaae iiaiaacckadaWcaaWdaeaapeGaaeyBaaWdaeaapeGaae4Caaaaaaa@43DB@  [4].

The penetration depth of SPART due to engine thrust, assuming that the solid rocket motor thrust is R=2 F 0 =55029.36 N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaeyypa0JaaGOmaiaadAeapaWaaSbaaSqaa8qacaaIWaaa paqabaGcpeGaeyypa0JaaGynaiaaiwdacaaIWaGaaGOmaiaaiMdaca GGUaGaaG4maiaaiAdacaqGGaGaaeOtaaaa@432B@  and it is activated at a depth of L V opt =51.42 m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbWdamaaBaaaleaapeGaamOva8aadaWgaaadbaWdbiaad+ga caWGWbGaamiDaaWdaeqaaaWcbeaak8qacqGH9aqpcaaI1aGaaGymai aac6cacaaI0aGaaGOmaiaabccacaqGTbaaaa@41D1@ , will be determined by the formula L ps = V opt T=145.16 m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaGaamiCaiaadoha aeqaaOWdbiabg2da9iaadAfapiWaaSbaaSqaa8qacaWGVbGaamiCai aadshaa8Gabeaak8qacaWGubGaeyypa0JaaGymaiaaisdacaaI1aGa aiOlaiaaigdacaaI2aGaaeiiaiaab2gaaaa@4851@ .

After engine shutdown, the SPART with a mass of M g artp =283,8 kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaaeeaaaaaaaaieBHn2Aa8GabaWdbiaad2eacaWGNbWdcmaa BaaaleaapeGaamyyaiaadkhacaWG0bGaamiCaaWdceqaaOWdbiabg2 da9iaaikdacaaI4aGaaG4maiaacYcacaaI4aGaaeiiaiaabUgacaqG NbaacaGLOaGaayzkaaaaaa@4703@  will continue moving by inertia until it comes to a complete stop, covering a distance of L V=0 =8,9 m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbWdamaaBaaaleaapeGaamOvaiabg2da9iaaicdaa8aabeaa k8qacqGH9aqpcaaI4aGaaiilaiaaiMdacaqGGaGaaeyBaaaa@3EE7@ .

The total penetration depth of the SPART with a mass of M g artp =345 kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbGaam4zaabbaaaaaaaacXwyJTgapiWaaSbaaSqaa8qacaWG HbGaamOCaiaadshacaWGWbaapiqabaGcpeGaeyypa0JaaG4maiaais dacaaI1aGaaGzaVlaabccacaqGRbGaae4zaaaa@4570@ , assuming it moves through the soil in three stages MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  first, by inertia from the moment of entry to a depth of 51.42 m; second, with the propulsion system activated and operating at optimal thrust with 61.2 kg of fuel; and third, by inertia again after engine shutdown until coming to a complete stop MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  will be L full ps = L V opt + L ps + L V=0 =205.48 m. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbaeeaaaaaaaaieBHn2Aa8GadaqhaaWcbaGaamOzaiaadwha caWGSbGaamiBaaqaaiaadchacaWGZbaaaOWdbiabg2da9iaadYeapi WaaSbaaSqaa8qacaWGwbWdcmaaBaaameaapeGaam4BaiaadchacaWG 0baapiqabaaaleqaaOWdbiabgUcaRiaadYeapiWaaSbaaSqaaiaadc hacaWGZbaabeaak8qacqGHRaWkcaWGmbWdcmaaBaaaleaapeGaamOv aiabg2da9iaaicdaa8Gabeaak8qacqGH9aqpcaaIYaGaaGimaiaaiw dacaGGUaGaaGinaiaaiIdacaqGGaGaaeyBaiaac6caaaa@55DB@

When designing the propulsion system for SPART, it is necessary to take into account the overloads acting on both the projectile body and the propellant charge at the moment when the SPART’s nose section is fully embedded in the soil. At this moment, SPART is moving by inertia, and the overload reaches its maximum value:

n x = F 0 +B V ent 2 M g artp g = 27514,68+11,087* 365 2 345*9,81 =445.07 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaWdbiaadIhaa8Ga beaak8qacqGH9aqpcqGHsisldaWcaaWdceaapeGaamOra8GadaWgaa WcbaWdbiaaicdaa8Gabeaak8qacqGHRaWkcaWGcbGaamOva8Gadaqh aaWcbaGaamyzaiaad6gacaWG0baabaWdbiaaikdaaaaak8GabaWdbi aad2eacaWGNbWdcmaaBaaaleaapeGaamyyaiaadkhacaWG0bGaamiC aaWdceqaaOWdbiaabEgaaaGaeyypa0JaeyOeI0YaaSaaa8GabaWdbi aaikdacaaI3aGaaGynaiaaigdacaaI0aGaaiilaiaaiAdacaaI4aGa ey4kaSIaaGymaiaaigdacaGGSaGaaGimaiaaiIdacaaI3aGaaiOkai aaiodacaaI2aGaaGyna8GadaahaaWcbeqaa8qacaaIYaaaaaGcpiqa a8qacaaIZaGaaGinaiaaiwdacaGGQaGaaGyoaiaacYcacaaI4aGaaG ymaaaacqGH9aqpcqGHsislcaaI0aGaaGinaiaaiwdacaGGUaGaaGim aiaaiEdaaaa@69CF@ .

Let us assume that the operating pressure in the combustion chamber is P с =25 MPa MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaGaamyqeaqabaGc peGaeyypa0JaaGOmaiaaiwdacaGGGcGaaeytaiaabcfacaqGHbaaaa@404C@ . The minimum wall thickness of the combustion chamber, according to shell theory, is determined by the formula [5]:

δ min = P с 2 σ st rε=1,6 mm,  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH0oazqqaaaaaaaaGqSf2yRbWdcmaaBaaaleaapeGaaeyBaiaa bMgacaqGUbaapiqabaGcpeGaeyypa0ZaaSaaa8GabaWdbiaadcfapi WaaSbaaSqaaiaadgebaeqaaaGcbaWdbiaaikdacqaHdpWCpiWaaSba aSqaaiaadohacaWG0baabeaaaaGcpeGaamOCaiabew7aLjabg2da9i aaigdacaGGSaGaaGOnaiaabccacaqGTbGaaeyBaiaacYcacaGGGcaa aa@4F2E@

where σ st =6* 10 8 N m 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCqqaaaaaaaaGqSf2yRbWdcmaaBaaaleaapeGaam4Caiaa dshaa8Gabeaak8qacqGH9aqpcaaI2aGaaiOkaiaaigdacaaIWaWdcm aaCaaaleqabaWdbiaaiIdaaaGcpiWaaSaaaeaacaqGobaabaGaaeyB amaaCaaaleqabaGaaeOmaaaaaaaaaa@441D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  tensile strength of the combustion chamber material; r= D ex 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGYbGaeyypa0ZaaSaaa8aabaWdbiaadseaqqaaaaaaaaGqSf2y RbWdcmaaBaaaleaacaWGLbGaamiEaaqabaaak8aabaWdbiaaikdaaa aaaa@3E28@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  radius of the solid rocket motor; ε = 1.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  safety factor.

Based on design and technological considerations, we will choose the wall thickness of the combustion chamber δ = 2.2 mm. In this case, the internal diameter of the combustion chamber will be D cc = D ex 2δ=0.148 m. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaGaam4yaiaadoga aeqaaOWdbiabg2da9iaadseapiWaaSbaaSqaaiaadwgacaWG4baabe aak8qacqGHsislcaaIYaGaeqiTdqMaeyypa0JaaGimaiaac6cacaaI XaGaaGinaiaaiIdacaqGGaGaaeyBaiaac6caaaa@4967@

For more efficient use of the combustion chamber's volume, it is advisable to use a poured solid propellant charge. In this case, the charge of a given mass and density will have a minimum length. For the case under consideration, when the internal diameter of the combustion chamber, the volume, mass, and density of the propellant are known, the length of the propellant charge will be determined by the formula l fc = 4 M f π ρ f D cc 2 =2.22 m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGSbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaGaamOzaiaadoga aeqaaOWdbiabg2da9maalaaapiqaa8qacaaI0aGaamyta8GadaWgaa WcbaGaamOzaaqabaaakeaapeGaeqiWdaNaeqyWdi3dcmaaBaaaleaa caWGMbaabeaak8qacaWGebWdcmaaDaaaleaacaWGJbGaam4yaaqaa8 qacaaIYaaaaaaakiabg2da9iaaikdacaGGUaGaaGOmaiaaikdacaqG GaGaaeyBaaaa@4D39@ .

Selection of the Design Configuration of SPART

Depending on the burn rate of the propellant used, different design configurations of solid rocket motors can be applied to ensure the normal operation of the engine. Below, three design configurations are presented [6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 7].

Scheme а. The burn rate of the selected (fast-burning) propellant at the given pressure in the chamber will be U=0,149 P c 0,53 =744 mm MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGvbGaeyypa0JaaGimaiaacYcacaaIXaGaaGinaiaaiMdacaWG qbaeeaaaaaaaaieBHn2Aa8GadaqhaaWcbaGaam4yaaqaa8qacaaIWa GaaiilaiaaiwdacaaIZaaaaOGaeyypa0JaaG4naiaaisdacaaI0aGa aeiiaiaab2gacaqGTbaaaa@4871@ . The thickness of the burned layer over the total operating time of the engine will be Δ=UT=2,168 m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHuoarcqGH9aqpcaWGvbGaamivaiabg2da9iaaikdacaGGSaGa aGymaiaaiAdacaaI4aGaaGzaVlaabccacaqGTbaaaa@4225@ .

To ensure the movement of SPART through the soil at optimal speed due to the operating engine, a motor with end-burning of the propellant (cigarette burn) can be used (see Fig. a).

 

Constructive schemes of active-reactive type projectiles:

a MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbtaqa aaaaaaaaWdbiaa=nbiaaa@3775@  with a filled solid fuel charge; b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbtaqa aaaaaaaaWdbiaa=nbiaaa@3775@  with a multimodule engine; c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbtaqa aaaaaaaaWdbiaa=nbiaaa@3775@  with a nested tubular charge

 

In this case, the surface area of the propellant burn will be S full = π D cc 2 4 =0.0172 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWaaSbaaSqaaiaadAgacaWG1bGaamiBaiaadYgaaeqaaOGa eyypa0ZaaSaaaabbaaaaaaaacXwyJTgapiqaa8qacaqGapGaamira8 GadaqhaaWcbaGaam4yaiaadogaaeaapeGaaGOmaaaaaOWdceaapeGa aGinaaaacqGH9aqpcaaIWaGaaiOlaiaaicdacaaIXaGaaG4naiaaik daaaa@496C@ .

The total area of the critical sections of all nozzles can be determined based on the steady-state equilibrium between the gas inflow into the combustion chamber and their outflow, according to the formula [8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 10]

F cr = U β p S full ρ f P c =0.001146  m 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaGaam4yaiaadkha aeqaaOWdbiabg2da9maalaaapiqaa8qacaWGvbGaeqOSdi2dcmaaBa aaleaapeGaamiCaaWdceqaaOWdbiaadofapiWaaSbaaSqaaiaadAga caWG1bGaamiBaiaadYgaaeqaaOWdbiabeg8aY9GadaWgaaWcbaGaam OzaaqabaaakeaapeGaamiua8GadaWgaaWcbaGaam4yaaqabaaaaOWd biabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIXaGaaGymaiaais dacaaI2aGaaeiiaiaab2gapiWaaWbaaSqabeaapeGaaeOmaaaaaaa@53C6@ ,

where β p =1400  Ns kg MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGypaWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaeyypa0Ja aGymaiaaisdacaaIWaGaaGimaiaabccadaWcaaWdaeaapeGaaeOtai aabohaa8aabaWdbiaabUgacaqGNbaaaaaa@41C6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@  specific impulse of pressure.

For the selected design configuration of SPART, using a motor with end-burning of the propellant, either a single nozzle with a critical section diameter of 38 mm can be used, or a nozzle block with a total critical section area of 1146 mm ² MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=jlaaaa@3823@ [11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 12].

Scheme b. The burn rate of the selected propellant at the given pressure in the chamber will be U=18+1.76* 10 6 P c =62 mm s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGvbGaeyypa0JaaGymaiaaiIdacqGHRaWkcaaIXaGaaiOlaiaa iEdacaaI2aGaaiOkaiaaigdacaaIWaaeeaaaaaaaaieBHn2Aa8Gada ahaaWcbeqaa8qacqGHsislcaaI2aaaaOGaamiua8GadaWgaaWcbaGa am4yaaqabaGcpeGaeyypa0JaaGOnaiaaikdadaWcaaWdceaapeGaae yBaiaab2gaa8GabaWdbiaabohaaaaaaa@4B3D@ . The thickness of the burned layer over the total operating time of the engine will be Δ=UT=180.668 mm. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHuoarcqGH9aqpcaWGvbGaamivaiabg2da9iaaigdacaaI4aGa aGimaiaac6cacaaI2aGaaGOnaiaaiIdacaqGGaGaaeyBaiaab2gaca GGUaaaaa@43BF@

To ensure the movement of SPART through the soil at optimal speed due to the operating engine, a six-section multi-module engine with end-burning of the propellant charges can be used (see Fig. b). The length of each charge will be equal to twice the thickness of the burned layer, i. e. l fc 1/6 =2Δ=361.336 mm. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGSbaeeaaaaaaaaieBHn2Aa8GadaqhaaWcbaGaamOzaiaadoga aeaapeGaaGymaiaac+cacaaI2aaaaOGaeyypa0JaaGOmaiabgs5aej abg2da9iaaiodacaaI2aGaaGymaiaac6cacaaIZaGaaG4maiaaiAda caqGGaGaaeyBaiaab2gacaGGUaaaaa@49FC@

In this case, the total surface area of the propellant burn will be [13 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 14]

S full = π D cc 2 4 n=0.206  m 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWaaSbaaSqaaiaadAgacaWG1bGaamiBaiaadYgaaeqaaOGa eyypa0ZaaSaaaabbaaaaaaaacXwyJTgapiqaa8qacaqGapGaamira8 GadaqhaaWcbaGaam4yaiaadogaaeaapeGaaGOmaaaaaOWdceaapeGa aGinaaaacaWGUbGaeyypa0JaaGimaiaac6cacaaIYaGaaGimaiaaiA dacaqGGaGaaeyBa8GadaahaaWcbeqaa8qacaqGYaaaaaaa@4C39@ ,

where n=12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0JaaGymaiaaikdacqGHsislaaa@3A96@  number of combustion surfaces.

The total area of the critical sections of all nozzles can be determined based on the steady-state equilibrium between the gas inflow into the combustion chamber and their outflow, according to the formula [8]

F cr = U β p S full ρ f P c =0.001146  m 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbaeeaaaaaaaaieBHn2Aa8GadaWgaaWcbaGaam4yaiaadkha aeqaaOWdbiabg2da9maalaaapiqaa8qacaWGvbGaeqOSdi2dcmaaBa aaleaapeGaamiCaaWdceqaaOWdbiaadofapiWaaSbaaSqaaiaadAga caWG1bGaamiBaiaadYgaaeqaaOWdbiabeg8aY9GadaWgaaWcbaGaam OzaaqabaaakeaapeGaamiua8GadaWgaaWcbaGaam4yaaqabaaaaOWd biabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIXaGaaGymaiaais dacaaI2aGaaeiiaiaab2gapiWaaWbaaSqabeaapeGaaeOmaaaaaaa@53C6@ .

For the selected design configuration of SPART, using a six-section multi-module engine with end-burning of the propellant charges, seven annular nozzles can be used. These nozzles should be placed at the ends of each of the six charges, with the five middle nozzles having identical critical sections with an area of 0.000191 m ² MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=jlaaaa@3823@ , and the outer nozzles having half the area, i.e., 0.0000955 m ² MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=jlaaaa@3823@ .

Scheme c. The burn rate of the selected propellant at the given pressure in the chamber will be U=0.001 P c 0,53 =5.667 mm MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGvbGaeyypa0JaaGimaiaac6cacaaIWaGaaGimaiaaigdacaWG qbaeeaaaaaaaaieBHn2Aa8GadaqhaaWcbaGaam4yaaqaa8qacaaIWa GaaiilaiaaiwdacaaIZaaaaOGaeyypa0JaaGynaiaac6cacaaI2aGa aGOnaiaaiEdacaqGGaGaaeyBaiaab2gaaaa@49DB@ . The thickness of the burned layer over the total operating time of the engine will be Δ=UT=0.015 m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHuoarcqGH9aqpcaWGvbGaamivaiabg2da9iaaicdacaGGUaGa aGimaiaaigdacaaI1aGaaeiiaiaab2gaaaa@4092@ .

To ensure the movement of SPART through the soil at optimal speed, in this configuration, an engine with nested tubular propellant charges can be used (see Fig. c).

The main disadvantages of the SPART design using an engine with nested tubular propellant charges are the low degree of fuel filling in the combustion chamber and the need to ensure the stability of the fuel charges when SPART enters the soil (see Fig. c) [15 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbwaqa aaaaaaaaWdbiaa=nbiaaa@37A4@ 17].

Conclusion

As a result of the conducted computational and experimental studies to determine the penetration depth into loam of 152.4 mm probe projectiles with a length of 4.6 m, launched from an artillery system using the same gunpowder charge weighing 18 kg, it was established that:

1. The maximum total penetration depth of SPART, if it were moving through the soil:

  • on the first stage from the moment of entry until a depth of 51.42 m by inertia;
  • on the second stage with the engine turned on, using 61.2 kg of fuel and optimal thrust;
  • on the third stage from the moment the engine is turned off until the projectile comes to a complete stop, L full ps =205.48 m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFy0Jg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbaeeaaaaaaaaieBHn2Aa8GadaqhaaWcbaGaamOzaiaadwha caWGSbGaamiBaaqaaiaadchacaWGZbaaaOWdbiabg2da9iaaikdaca aIWaGaaGynaiaac6cacaaI0aGaaGioaiaabccacaqGTbaaaa@4607@  will exceed the penetration depth of the same projectile moving through the soil by inertia alone by more than twice.

2. The installation of the solid propellant rocket engine in the rear part of SPART (due to the shift in the center of mass forward caused by the difference in densities of the gunpowder and steel) significantly increases its static stability. This, when the probe projectiles move uncontrolled through the soil, allows for a more straight-line trajectory.

3. It is advisable to use SPART (both on Earth and on the surfaces of other planets) to solve a number of scientific tasks related to the formation of boreholes in the soil and the delivery of payloads to a certain depth.

4. For practical application of the formula that determines the soil resistance force when penetrating with probe projectiles, it is necessary to have a database of experimental values for the specific static resistances F 0spec MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraabbaaaaaaaacXwyJTgapiWaaSbaaSqaa8qacaaIWaGaam4C aiaadchacaWGLbGaam4yaaWdceqaaaaa@3DA0@  and resistance coefficients B, depending on the shape of SPART and its speed through the soil.

Благодарности. Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (шифр FSFF-2025-0001).

Acknowledgments. The work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (code FSFF-2025-0001).

×

作者简介

Evgeniy Gusev

Moscow Aviation Institute (National Research University)

编辑信件的主要联系方式.
Email: ccg-gus@mail.ru
ORCID iD: 0000-0003-1634-0352

Cand. Sc., Associate Professor of Department 610 “Operation Management of Rocket and Space Systems”

俄罗斯联邦, 4, Volokolamskoe shosse, Moscow, 125993

Vladimir Zagovorchev

Moscow Aviation Institute (National Research University)

Email: zagovorchev@mai.ru
ORCID iD: 0009-0003-9892-3742

Cand. Sc., Associate Professor, Associate Professor of Department 610 “Operation Management of Rocket and Space Systems”, Head of Research Department-6 Aerospace Institute

俄罗斯联邦, 4, Volokolamskoe shosse, Moscow, 125993

Vladimir Rodchenko

Moscow Aviation Institute (National Research University)

Email: rodchenko47@mail.ru
ORCID iD: 0009-0004-9105-8263

Dr. Sc., Professor, Professor of Department 610 “Operation Management of Rocket and Space Systems”

俄罗斯联邦, 4, Volokolamskoe shosse, Moscow, 125993

Elnara Sadretdinova

Moscow Aviation Institute (National Research University)

Email: elnara-5@mail.ru
ORCID iD: 0009-0006-3601-9653

Cand. Sc., Associate Professor, Deputy Director of the Aerospace Institute

俄罗斯联邦, 4, Volokolamskoe shosse, Moscow, 125993

Elizaveta Shipnevskaya

Moscow Aviation Institute (National Research University)

Email: Shipnevskaya.E@gmail.com
ORCID iD: 0009-0001-4018-4786

postgraduate student of Department 610 “Operation Management of Rocket and Space Systems”

俄罗斯联邦, 4, Volokolamskoe shosse, Moscow, 125993

参考

  1. Gusev E. V., Zagovorchev V. A., Rodchenko V. V. et al. [The influence of the twist of a ground jet penetrator on the parameters of its movement in the lunar soil]. Vestnik NPO im. S. A. Lavochkina. 2024, No. 1(63), P. 56–62 (In Russ.).
  2. Rodchenko V. V. [Fundamentals of Designing Jet Apparatus for Movement in the Ground]. Osnovy proektirovaniya reaktivnykh apparatov dlya dvizheniya v grunte. Moscow, MAI Pabl., 2009, 359 p.
  3. Aptukov V. N., Devyatkin V. A., Fonarev A. V., Aleksandrov M. Yu. [Numerical and Experimental Study of Penetration of a Punching Projectile into a Soil Massif]. Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika. 2012, No. 4(12), P. 5–11 (In Russ.).
  4. Zagovorchev V. A. Metod obosnovaniya tekhnicheskikh kharakteristik mnogomodul'nykh lunnykh reaktivnykh penetratorov. Kand. Dis. [Method of substantiation of technical characteristics of multimodular lunar jet penetrators. Cand. Diss.]. Moscow, 2015,144 p.
  5. Belov G. V. et al. Osnovy proektirovaniya raket [Fundamentals of rocket design]. Moscow, Mashinostroenie Publ., 1974, 255 p.
  6. Zel'dovich Ya. B. et al. Impul's reaktivnoy sily porokhovykh raket [Impulse of reactive force of powder rockets]. Moscow, Oborongiz Pabl., 1963, 190 p.
  7. Zagovorchev V. A., Pronina P. F., Rodchenko V. V. [Calculation of the main design parameters and design of a jet penetrator for movement in lunar soil]. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika. 2020, No. 4, P. 126–132 (In Russ.).
  8. Sagomonyan A. Ya. Pronikanie [Penetration.]. Moscow, Izd-vo Moskovskogo un-ta Pabl., 2014, 298 p.
  9. Rodchenko V. V., Zagovorchev V. A., Sadretdinova E. R., Pronina P. F. [Application of Jet Penetrators for Movement in Lunar Soil]. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta. 2019, Vol. 23, No. 1(83), P. 56–63 (In Russ.).
  10. Fedorov S. V., Fedorova N. A. [Effect of jet thrust impulse on the penetration depth of a research probe into the planet’s soil]. Inzhenernyy zhurnal: nauka i innovatsii. 2013, No. 1 (13), P. 29–30 (In Russ.).
  11. Veldanov V. A., Daurskikh A. Yu. [Possibilities of modeling the penetration of bodies into soil environments]. Inzhenernyy zhurnal: nauka i innovatsii. 2013, No. 9 (21), P. 28–29 (In Russ.).
  12. Fedorov S. V., Veldanov V. A., Dyukov A. V., Gushchina T. A. [Determination of the penetration parameters of penetrators into soil-rock barriers using various empirical dependencies]. Inzhenernyy zhurnal: nauka i innovatsii. 2022, No. 4, P. 1–2 (In Russ.).
  13. Mikhaylovskiy Yu. V. Osnovy teorii reaktivnykh dvigateley [Fundamentals of the Theory of Jet Engines]. Moscow, MO SSSR Publ., 1970, 198 p.
  14. Gostintsev Yu. A. [Flow Characteristics of a Nozzle during the Exhaust of a Helical Gas Flow]. Izv. AN SSSR. MZhG. 1969, No. 4, P. 158–162 (In Russ.).
  15. Alemasov V. E. Dregalin A. F. Teoriya raketnykh dvigateley [Theory of Rocket Engines]. Moscow, Mashinostroenie Pabl., 1969, 547 p.
  16. Orlov B. V., Mazing G. Yu. Termodinamicheskie i ballisticheskie osnovy proektirovaniya RDTT [Thermodynamic and Ballistic Fundamentals of Designing Solid Propellant Rocket Engines]. Moscow, Oborongiz Pabl., 1968, 536 p.
  17. Kurov V. A., Dolzhanskiy Yu. M. Osnovy proektirovaniya porokhovykh raketnykh snaryadov [Dolzhansky Yu. Fundamentals of Designing Powder Rocket Projectiles]. Moscow, Oborongiz Pabl., 1961, 294 p.

补充文件

附件文件
动作
1. JATS XML
2. Constructive schemes of active-reactive type projectiles: a  with a filled solid fuel charge; b  with a multimodule engine; c  with a nested tubular charge

下载 (42KB)

版权所有 © Gusev E.V., Zagovorchev V.A., Rodchenko V.V., Sadretdinova E.R., Shipnevskaya E.A., 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可