Ethiology and pathogenesis of amyloidoses: the molecular and genetic basis



Cite item

Full Text

Abstract

I he modern concepts of molecular and genetic basis of amyloidoses are considered in the brief review. The problems of classification, the common principles of amyloid formation, the mechanisms of fibrillogenesis and causes of tissue degeneration are discussed. The examples of certain amyloidoses are presented. The great attention is devoted to the hereditary forms of these diseases. The modern approach to diagnostics and therapy of different amyloidoses are discussed.

Full Text

Restricted Access

About the authors

M M Schavlovsky

Email: mmsch@rambler.ru

References

  1. Егоров В.В., Гармай Ю.П., Соловьев К.В. и др. Амилоидогенный пептид, гомологичный участку β-домена α-лактальбуминов // ДАН «Биохимия, биофизика, молекулярная биология». 2007. Т. 414. № 6. С. 1-33.
  2. Покровский В.И., Киселев О.И., Черкасский Б.Л. Прионы и прионные болезни. М.: Изд-во РАМН, 2004. С. 385.
  3. Семернин Е.Н., Шавловский М.М., Костарева A.A. и др. Наследственный амилоидоз с поражением сердечно-сосудистой системы // Артериальная гипертензия. 2008. Приложение № 2. Т. 14. № 2. С. 89-93.
  4. Соловьев К.В., Гастева A.A., Егоров В.В. и др. Роль С-концевого фрагмента транстиретина человека в аномальном фибриллогенезе // Биохимия. 2006. Т. 71. С. 672-680.
  5. Ando Y., Nakamura М., Araki S. Transthyretin-related familial amyloidotic polyneuropathy // Arch. Neurol. 2005. Vol. 62. P. 1057-1062.
  6. Assenat H., Calemard E., Charra B. et al. Haemodialyse syndrome du canal carpien et substance amyloide // Presse Med. 1980. Vol. 9. P. 1715.
  7. Bardin T., Vasseur М., de Vemejoul M.C., Raymond P. et al. Prospective study of articular involvement in patients on hemodialysis for 10 years // Rev. Rhum. Mal. Osteo-artic. 1988. Vol. 55. P. 131-133.
  8. Bardin T., Zingraff J., Shirahama T. et al. Hemodialysis-associated amyloidosis and β2-microglobulin. Clinical and immnohistochemical study // Am. J. Med. 1987. Vol. 83. P. 419-424.
  9. Bartolini M., Andrisano V. Strategies for the Inhibition of Protein Aggregation in Human Diseases // ChemBi-oChem 2010. Vol. 11. P. 1-19.
  10. Berggard I., Beam A. G. Isolation and properties of a low molecular weight B2-globulin occurring in human biological fluids // J. Biol. Chem. 1968. Vol. 243. P. 4095-4103.
  11. Bliat A., Sclmi C., Naguwa S. M. et al. Currents Concepts on the Immunopathology of Amyloidosis // Clin. Rev. Allerg. Immunol. 2010. Vol. 38. P. 97-106.
  12. Bindi P., Chanard J. Destructive spondyloarthlopaty in dialysis patients: an overview // Nephron. 1990. Vol. 55. P. 104-109.
  13. Brorsson A.C., Kumita J.R., MacLeod I. et al. Methods and models in neurodegenerative and systemic protein aggregation diseases // Front Biosci. 2010. Vol. 15. P. 373-396.
  14. Buxbaum J.N. Animal models of human amyloidoses: Are transgenic mice worth the time and trouble? // FEBS Letters. 2009. Vol. 583. P. 2663-2673.
  15. Calabrese M.F., Miranker A.D. Formation of a Stable Oligomer of β-2 Microglobulin Requires only Transient Encounter with Cu(II) // J. Mol. Biol. 2007. Vol. 367. P. 1-7.
  16. Carrell R.W., Lomas D.A. Conformational disease // Lancet. 1997. Vol. 350. P. 134-138.
  17. Drüecke T.B. β2-Microglobulin and amyloidosis // Nephrol. Dial. Transplant. 2000. Vol. 15 (Suppl. 1). P. 17-24.
  18. Egorov V.V., Solovyov K.V., Grudinina N.A. et al. Atomic force study of peptides homologous to beta-domain of alpha-lactalbuins // Protein and Peptide Letters. 2007. Vol. 14. P. 471-474.
  19. Felding P., Fex G. Cellular origins of prealbumin in the rat // Biochem. Biophys. Acta. 1982. Vol. 716. P. 446-449.
  20. Gejyo F., Homma N., Suzuki Y. Serum levels of β2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis // N. Engl. J. Med. 1986. Vol. 31. P. 4585-4586.
  21. Gejyo F., Narita I. Current clinical and pathogenetic understanding of β2-mamyloidosis in long-term haemodialysis patients // Nephrology. 2003. Vol. 8. P. S45-S49.
  22. Häggqvist В., Näslund J., Sletten К. et al. Medin: An integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid // Proc. Natl. Acad. Sei. USA. Vol. 96. P. 8669-8674.
  23. Heilman U., Alarcon F., Lundgren H.E. et al. Heterogeneity of penetrance in familial amyloid polyneuropathy, ATTR Val30Met, in the Swedish population // Amyloid. 2008. Vol. 15. № 3. P. 181-186.
  24. Huang X., Atwood C.S., Hartshorn M.A. et al. The Ab peptide of Alzheimer’s disease directly produces hydrogen peroxide through metalionreduction // Biochemistry. 1999. Vol. 38. P. 7609-7616.
  25. Huang X., Cuajungco M.P., Atwood C.S. et al. Cu(ll) potentiation of Alzheimer Ab neurotoxicity // J. Biol. Chem. 1999. Vol. 274. P. 37111-37116.
  26. Ihse E., Ybo A., Suhr O. et al. Amyloid fibril composition is related to the phenotype of hereditary trans thyretin V30M amyloidosis// J. Pathol. 2008. Vol. 216. № 2. P. 253-261.
  27. Jadoul M., Garbar C., Noël H. et al. Histological prevalence of beta 2-microglobulin amyloidosis in hemodialysis: a prospective post-mortem study // Kidney Int. 1997. Vol. 51. №6. P. 1928-1932.
  28. Jahn T., Tennent G.A., Radford S.E. A common β-sheet architecture underlies in vitro and in vivo β2-microglobulin amyloid fibrils // J. Biol. Chem. 2008. Vol. 283. №25. P. 17279-17286.
  29. Krebs M.R.H., Bromley E.H.C., Rogers S.S. et al. The Mechanism of Amyloid Spherulite Formation by Bovine Insulin // Biophys. J. 2005. Vol. 88. P. 2013-2020.
  30. Lashuel H.A., Wurth C., Woo L., Kelly J.W. The most pathogenic transthyretin variant, L55P, forms amyloid fibrils under acidic conditions and protofilaments under physiological conditions// Biochemistry. 1999. Vol. 38. P. 13560-13573.
  31. Linke R.P., Hampl H., Lobeck H. et al. Lysine-specific cleavage of β2-microglobulin in amyloid deposits associated with hemodialysis // Kidney Int. 1989. Vol. 36. P. 675-681.
  32. Mishra R., Sörgjerd K., Nyström S. et al. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion // J. Mol. Biol. 2007. Vol. 366. P. 1029-1044.
  33. Ohashi К., Нага M., Kawai R. et al. Cervical dises are most susceptible to beta 2-microglobulin amyloid deposition in the vertebral column // Kidney Int. 1992. №41. P. 1646-1652.
  34. Picken M.M. Amyloidosis where are we now and where are we heading? // Arch. Pathol. Lab. Med. 2010. Vol. 134. P. 545-551.
  35. Rokitansky C. Die speckige Leber. In Handbuch der speciellen pathologischen Anatomie / Ed. C. Rokitansky. Wien. Braumuller und Seidel. 1842. P. 311-312.
  36. Saito A., Gejyo F. Current Clinical Aspects of Dialysis-Related Amyloidosis in Chronic Dialysis Patients // Therapeutic Apheresis and Dialysis. 2006. Vol. 10. №4. P. 316-320.
  37. Santos M., Clevers H., de Sousa M. et al. Adaptive response of iron absorption to anemia, increased erythropoiesis, iron deficiency, and iron loading in B2-mi-croglobulin knockout mice // Blood. 1998. Vol. 91. P. 3059-3065.
  38. Saraiva M.J.M., Birken S., Costa P. et al. Family studies of the genetic abnormality in transthyretin (prealbumin) in Portuguese patients with familial amyloidotic polyneuropathy // Ann. N.Y. Acad. Sei. 1984. Vol. 435. P. 86-100.
  39. Schwarzman A.L., Gregori L., Vitek M.P.S. et al. Transthyretin sequesters amyloid β protein and prevents amyloid formation // Proc. Natl. Acad. Sei. USA. 1994. Vol. 91. P 8368-8372.
  40. Schwarzman A.L., Tsiper M., Wente H. et al. Amyloidogenic and anti-amyloidogenic properties of recombinant transthyretin variants // Amyloid. 2004. Vol. //. P. 1-9.
  41. Sideras K., Gertz M.A. Amyloidosis // Adv. Clin. Chem. 2009. Vol. 47. P. 1-44
  42. Sunde M., Blake C.C.F. From the globular to the fibrous state: protein structure and structural conversionin amyloid formation // Q. Rev. Biophys. 1998. Vol. 31. P. 1-39.
  43. Surguchev A., Surguchovb A. Conformational diseases: Looking into the eyes // Brain Res. Bull. 2010. Vol. 81. P. 12-24.
  44. Tillement J.-P., Lecanu L., Papadopoulos V. Amyloidosis and Neurodegenerative Diseases: Current Treatments and New Pharmacological Options // Pharmacology. 2010. Vol. 85. P. 1-17.
  45. Ventura S., Villaverde A. Protein quality in bacterial inclusion bodies // Trends Biotechnol. 2006. Vol. 24. P. 179-185.
  46. Virchow R. Uber den Gang der amyloiden Degeneration //Archiv. Path. Anat. Phisiol. Klin. Med. 1854. H. 8. P. 364-368.
  47. Virchow R. Uber eine im Gehirn und Rückenmark des Menschen aufgefundene Substanz mit der dienlichen Reaction der Cellulose // Archiv. Path. Anat. Phisiol. Klin. Med. 1854. H. 6. P. 135-138.
  48. Wang L., Maji S.K., Sawaya M.R. et al. Bacterial inclusion bodies contain amyloid-like structure// PLoS Biol. 2008. Vol. 6. P. e195.
  49. Westermark P., Benson M.D., Buxbaum J.N. et al. A primer of amyloid nomenclature //Amyloid. 2007. Vol. 14. №3. P. 179-183.
  50. Wyatt A., Yerbury J., Poon S. et al. The Chaperone Action of Clusterin and Its Putative Role in Quality Control of Extracellular Protein Folding //Adv. in Cane. Res. 2009. P. 89-114.

Copyright (c) 2010 Schavlovsky M.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies