Toxicology of carbon nanostructures

Abstract


Rapid advances in nanotechnology will inevitably raises as one of the most important problems the problem of studying the effect on humans and the environment as the production itself and its products. This problem has long been solved for the «ordinary» substances, but for nanoparticles these recommendations have not yet exist, it is not even a single approach to solving this problem. So far today studies of the dangers of nanotech products are on a «case on the case". A special place among other nanoparticles of carbon nanostructures occupy nanostructures as a whole, and fullerenes, in particular. In earlier studies it was showed that the biological effects of fullerenes depend on the form of administration, the degree of aggregation of its molecules. Therefore we can not talk about the toxicity of the fullerene as a substance, it is necessary to study its various water-soluble forms. Studies on the effects of complex C60/PVP in vivo in mice and rats with intraperitoneal introduction showed the full lack of any toxic effects of the fullerene itself. Moreover, there was even //s protective action that may be associated with antioxidant properties of the fullerene C60.

Keywords



L B Piotrovsky

Email: levon-piotrovsky@yandex.ru

M A Dumpis

E V Litasova

A F Safonova

E N Selina

V V Bulion

O M Rodionova

N S Sapronov

  1. Бочвар Д.А., Гальперн Е.Г. О гипотетических системах: карбододекаэдре, s-икозаэдране и карбо-s-икозаэдре//ДАН СССР. 1973. Т. 209. С. 610-612.
  2. Вуль А.Я., Соколов В.И. Исследования наноуглерода в России: от фуллеренов к нанотрубкам и наноалмазам // Рос. нанотехнол. 2007. Т. 3. № 3-4. С. 9-22.
  3. Зайцева О.Б., Тюнин М.А., Попов В.А. и др. Морфологические изменения в тканях внутренних органов при внутрибрюшинном введении комплекса С60 с поливинилпирролидоном / Биосовместимые наноструктурные материалы и покрытия медицинского назначения. Белгород, 2006. С. 376-380.
  4. Колесниченко A.B., Тимофеев М.А., Протопопова М.В. Токсичность наноматериалов 15 лет исследования // Рос. нанотехнол. 2008. Т. 3. № 3-4. С. 54-61.
  5. Методики клинических лабораторных исследований: Справочное пособие. Том 1. Гематологические исследования. Коагулологические исследования. Химико-микроскопические исследования / Под ред. В.В. Меньшикова. М.: Набора, 2008.
  6. Методические рекомендации по выявлению наноматериалов, представляющих потенциальную опасность для здоровья человека: Метод, реком. МР 1.2.2522-09, М., 2009.
  7. Онищенко Г.Г., Арчаков А.И., Бессонов В.В. и др. Методические подходы к оценке безопасности наноматериалов // Гигиена и санитария. 2007. Т. 6. С. 3-10.
  8. Пиотровский Л.Б. Фуллерены в биологии и медицине: проблемы и перспективы / Фундаментальные направления молекулярной медицины. СПб.: Росток. 2005. С. 195-268.
  9. Пиотровский Л.Б. Фуллерены в дизайне лекарственных веществ // Рос. нанотехнологии. 2007. Т. 2. №7-8. С. 6-18.
  10. Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. СПб.: Росток, 2006.
  11. Руководство по экспериментальному (доклиническому) изучению новых фармаколопіческих веществ / Под ред. Р.У. Хабриева. М.: Медицина, 2005.
  12. Серпов Л.H., Гацура В.В. Элементы экспериментальной фармакологии. М., 2000. С. 352.
  13. Сироткин А.К., Пиотровский Л.Б., Познякова Л.Н. и др. Влияние комплексов фуллерена С60 с поливинилпирролидоном на морфологию вирусов гриппа // Вопр. биол. мед. фарм. хим. 2005. Т. 3. С. 21-24.
  14. Трахтенберг И.М., Сова P.E., Шефтель В.О. и др. Показатели нормы у лабораторных животных в токсикологическом эксперименте (современные представления и методические подходы, основные параметры и константы). М.: Медицина, 1978.
  15. Шавловский М.М., Соловьев К.В., Думпис М.А. и др. Комплексы фуллерена С60 с белками плазмы крови человека // Нанотехнологии в биологии и медицине / Под ред. Е.В. Шляхто. СПб.: Любавич, 2009. С. 101-107.
  16. Ali S.S., Hardt J.I., Dugan L.L. SOD Activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study // Nanomedicine. NBM. 2008. Vol. 4. P. 294-383.
  17. Ajima K., Yudasaka M., Murakami T. Carbon nano-horns as anticancer drug carriers // Mol. Pharm. 2005. Vol. 2. P. 475-480.
  18. Angelini G., De Maria P., Fontana A. et al. Study of the aggregation properties of a novel amphiphilic C60 fullerene derivative // Langmuir. 2001. Vol. 17. P. 6404-6407.
  19. Bang J.J., Guerrero P.A., Lopez D.A. et al. Carbon nanotubes and other fullerene nanocrystals in domestic propane and natural gas combustion streams // J. Nanosci. Nanotechnol. 2004. Vol. 4. P. 716-718.
  20. Belgorodsky B., Fadeev L., Ittah V. et al. Formation and Characterization of stable human serum albumintris-malonic acid [C60]fullerene complex // Bioconjugate Chem. 2005. Vol. 16. P. 1058-1062.
  21. Benyamini H., Shulman-Peleg A., Wolfson H.J. et al. Interaction of C60-ful!erene and carboxyfullerene with proteins: docking and binding site alignment // Bioconjugate Chem. 2006. Vol. 17. P. 378-386.
  22. Bessman J.D. Automated Blood Counts and Differentials// Johns Hopkins University Press. 1986.
  23. Bianco A., Prato M. Can carbon nanotubes be considered useful tools for biological applications? // Adv. Mat. 2003. Vol. 15. P. 1765-1768.
  24. Brant J., Lecoanet H., Wiesner M.R. Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems // J. Nanopart. Res. 2005. Vol. 7. R 545-553.
  25. Brant J.A., Labille J., Bottero J.-Y. et al. Characterizing the Impact of Preparation Method on Fullerene Cluster Stmcture and Chemistry // Langmuir. 2006. Vol. 22. P. 3878-3885.
  26. Brant J.A., Labille J., Robichaud C.O. Fullerol cluster formation in aqueous solutions: Implications for environmental release // J. Colloid Interface Sei. 2007. Vol. 314. P. 281-288.
  27. Brown B. Hematology: Principles and Procedures // Philadelphia:Lea & Febiger. 1976.
  28. Chiang L.Y., Wang L.-Y., Swirczewski J.W. et al. Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors // J. Org. Chem. 1994. Vol. 59. P. 3960-3968.
  29. Chiang L.Y., Swirczewski J.W., Hsu C.S. et al. Multihydroxy Additions onto C60 Fullerene Molecules I/ J. Chem. Soc. Chem. Commun. 1992. P. 1791-1793.
  30. Da Ros T., Prato M. Medicinal chemistry with fullerenes and fullerene derivatives // Chem. Commun. 1999. P. 663-669.
  31. Dai L., From conventional technology to carbon nanotechnology: The fourth industrial revolution and the discoveries of C60, carbon nanotube and nanodiamond // Carbon nanotechnology / Ed. L.Dai. Elsevier, 2006. P. 3-11.
  32. Deichmann W.B., Henschler D., Holmsted B. et al. What is there that is not poison? A study of the Third defense by Paracelsus // Arch. Toxicol. 1986. Vol. 58. P. 207-213.
  33. Donaldson K., Stone V., Clouter A. et al. Ultrafine particles // Occup. Environ. Med. 2001. Vol. 58. P. 211- 216.
  34. Donaldson K., Stone V., Tran C.L. Nanotoxicology // Occup. Environ. Med. 2004. Vol. 61. P. 727-728.
  35. Dugan L., Turetsky D., Du C. et al. Carboxyfullerenes as neuroprotective agents // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. P. 9434-9439.
  36. Duncan L.K., Jinschek J.R., Vikesland P.J. C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge // Environ. Sei. Technol. 2008. Vol. 42. P. 173-178.
  37. Eilperin J. Nanotechnology’s big question: safety, some say micromaterials are coming to market without adequate controls / The Washington Post. 2005. October 23. P. All.
  38. Endoh S., Maru J., Uchida K. et al. Preparing samples for fullerene C60 hazard tests: Stable dispersion of fullerene crystals in water using a bead mill // Adv. Powder Technol. 2009. Vol. 20. P. 567-575.
  39. European Commission Health & Consumer Protection. SCENIHR opinion on "The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies”. September 2005.
  40. Feder B.J. Study raises concerns about carbon particles // The New York Times. 2004. March 29.
  41. Fortner I.D., Lyon D.Y., Sayes C.M. et al. C60 in water: nanocrystal formation and microbial response // Environ. Sei. Technol. 2005. Vol. 39. P. 4307-4316.
  42. Gharbi N., Pressac M., Hadchouel M. et al. [60]Fuller-ene is a pow'erful antioxidant in vivo with no acute or subacute toxicity // Nano Lett. 2005. Vol. 5. P. 2578-2585.
  43. Heiland A., Kastenholz H., Thidell A. et al. Nanopartieuiate materials and regulatory policy in Europe: An analysis of stakeholder perspectives // J. Nanopart. Res. 2006. Vol. 8.C. 709-719.
  44. Heiland A., Scheringer M., Siegrist M. et al. Risk assessment of engineered nanomaterials: A survey of industrial approaches // Environ. Sci. Technol. 2008. Vol. 42. P. 640-646.
  45. Henry T.B., Menn F., Fleming J.T. et al. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression // Environ. Health Perspect. 2007. Vol. 115. C. 1059-1065.
  46. Hu Z., Guan W., Wang W. et al. Synthesis of β-alanine C60 derivative and its protective effect on hydrogen peroxide-induced apoptosis in rat pheochromocytoma cells // Cell Biol. Internat. 2007. Vol. 31. P. 798-804.
  47. Hu Z., Xing H.P., Zhu Z. et al. Synthesis of cystine C60 derivative and its protective effects on hydrogen peroxide-induced apoptosis in PC12 cells // Chin. Chem. Lett. 2007. Vol. 18. P. 145-148.
  48. Huang H., Pierstorff E., Osawa E., Ho D. Active Nanodiamond Hydrogels for Chemotherapeutic Delivery // Nano Lett. 2007. Vol. 7. P. 3305-3314.
  49. Ikeda A., Doi Y., Hashizume M. et al. An extremely effective dna photocleavage utilizing functionalized liposomes with a fullerene-enriched lipid bilayer // J. Am. Chem. Soc. 2007. Vol. 129. P. 4140-4141.
  50. Jafvert C.T., Kulkarni P.P. Buckminsterfullerene’s (C60) Octanol-Water Partition Coefficient (Kow) and Aqueous Solubility // Environ. Sei. Technol. 2008. Vol. 42. P. 5945-5950.
  51. Jensen A.W., Wilson S.R., Schuster D.I. Biological applications of fullerenes // Bioorg Med Chem. 1996. Vol. 4. P. 767-779
  52. Li N., Sioutas C., Cho A. et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage // Environ. Health Perspect. 2003. Vol. 111. P. 455-460.
  53. Lyon D.Y., Adams L.K., Falkner J.C. Antibacterial Activity of Fullerene Water Suspensions: Effects of Preparation Method and Particle Size // Environ. Sei. Technol. 2006. Vol. 40. C. 4360-4366.
  54. Maynard A.D. Nanotechnology: The Next Big Thing, or Much Ado about Nothing? // Ann. Occup. Hyg. 2007. Vol. 51. C. 1-12.
  55. Muller J., Huaux F., Fonseca A. et al. Structural defects play a major role in the acute lung toxicity of multi wall carbon nanotubes: toxicological aspects // Chem. Res. Toxicol. 2008. Vol. 21. P. 1698-1705.
  56. Murr L.E., Soto K.F. А ТЕМ study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources // Mater. Characteriz. 2005. Vol. 55. P. 50-65.
  57. Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society & The Royal Academy of Engineering, Nanoscience and nanotechnologies. July 2004.
  58. Oberdörster G., Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles // Particulate Sci. Technol. 1996. Vol. 14. P. 135-151.
  59. Oberdörster G., Utell M.J. Ultrafine particles in the urban air: to the respiratory tract-and beyond [Editorial] // Environ Health Perspect. 2002. V. 110. P. A440-A441.
  60. Oberdörster E. Manufactured nanomaterials (fullerenes. C60) induce oxidative stress in the brain of juvenile largemouth bass // Environl. Health Perspect. 2004. Vol. 112. P. 1058-1062.
  61. Osawa E. Superaromaticity // Kogaku (Kyoto). 1970. Vol. 25. P. 854-863.
  62. Piotrovsky L.B. Biological activity of pristine fullerene C60 / Carbon nanotechnology // Ed. L. Dai. Elsevier, 2006. P. 235-253.
  63. Piotrovsky L.B., Eropkin M.Yu., Eropkina E.M. et al. Biological effects in cell cultures of fullerene C60: dependence on aggregation state // Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes / Cataldo F., Da Ros T. (eds.) Springer. 2008.
  64. Piotrovsky L.B., Kiselev O.l. Fullerenes and viruses // Fullerenes, Nanotubes. Carbon Nanostruct. 2004. Vol. 12. P. 397-403.
  65. Podol’skii I.Ya., Kondrat’eva E.V., Shcheglov I.V. et al. Fullerene C60 complexed with poly(N-vinylpyrrolidone) prevents the disturbance of long-term memory consolidation // Phys. Solid States. 2002. Vol. 44. P. 552-554.
  66. Podolski I.Ya., Kondratjeva E.V., Gurin S.S. et al. Fullerene C60 complexed with poly(N-vinylpyrrol-idone) prevents the disturbance of long-term memory consolidation induced by cycloheximide // Fullerenes, nanotubes, and carbon nanostructures. 2004. Vol. 12. P. 421-424.
  67. Rajagopalan P., Wudl F., Schinazi R.F. et al. Pharmacokinetics of a water-soluble fullerene in rats // Antimicrob. Agents Chemother. 1996. Vol. 40. P. 2262-2265.
  68. Robichaud C.O., Tanzil D., Weilenmann U. et al. Relative risk analysis of several manufactured nanomaterials: an insurance industry context // Environ. Sci. Techno!. 2005. Vol. 39. P. 8985-8994.
  69. Rogers E.J., Hsieh S.F., Organti N. et al. A high throughput in vitro analytical approach to screen for oxidative stress potential exerted by nanomaterials using a biologically relevant matrix: Human blood serum //Toxicol. in Vitro. 2008. Vol. 22. P. 1639-1647.
  70. Samet J.M., Dominici F., Curriero F.C. et al. Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994 // N. Engl. J. Med. 2000. Vol. 343. P. 1742-1749.
  71. Sayes C.M., Fortner J.D., Guo W. et al. The differential cytotoxicity of water-soluble fullerenes // Nano Lett. 2004. Vol. 4. P. 1881-1887.
  72. Shi J.P., Evans D.E., Khan A.A., and Harrison R.M. Sources and concentration of nanoparticles (<10 nm diameter) in the urban atmosphere // Atmos. Environ. 2001. Vol. 35. P. 1193-1202.
  73. Shibuya M., Kato M., Ozawa M., Fang P.H., Osawa E. Detection of buckminsterfullerene in usual soot and commercial charcoals // Full. Sei. Technol. 1999. Vol. 7. P. 181-193.
  74. Statlfnd B.E. Clinical Decision Levels for Lab Tests / Medec. Books. 1987.
  75. Tsuchiya T., Oguri I., Yamakoshi Y.N. et al. Effect of [60]fullerene on the chondrogenesis in mouse embryonic limb bulb cell culture system // Full. Sci. Technol. 1996. Vol. 4. P. 989-999.
  76. Tsuchiya T., Yamakoshi Y.N., Miyata N. A novel promoting action of fullerene C60 on the chondrogenesis in rat embryonic limd bud cell culture system // Biochem. Biophys. Res. Commun. 1995. Vol. 206. P. 885-894.
  77. Wharton T., Kini V.U. et al. New non-ionic, highly water-soluble derivatives of C60 designed for biological compatibility // Tetrahedron Lett. 2001. Vol. 42. P. 5159-5162.
  78. Williams W.J. et al. Hematology / McGraw Hill. New York. 1972.
  79. Wittmaack K. In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: Particle number, surface area, or what? // Environ. Health Perspect. 2007. Vol. 115. P. 187-194.
  80. Xiao L., Takada H. et al. The water-soluble fullerene derivative ‘Radical Sponge®’ exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes // Biorg. Med. Chem. Lett. 2006. Vol. 16. P. 1590-1595.

Views

Abstract - 25

Cited-By


PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2010 Piotrovsky L.B., Dumpis M.A., Litasova E.V., Safonova A.F., Selina E.N., Bulion V.V., Rodionova O.M., Sapronov N.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies