THE PHYSIOLOGICAL MECHANISMS OF THE PULMONARY VENOUS HYPERTENSION



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the review regulatory mechanisms of functions of pulmonary venous vessels have been considered as well as the signifi cance of their impairment in the development of the pulmonary hypertension, caused by the left ventricular cardiac failure. One of the trigger mechanisms of the development of the pulmonary hypertension as a result of the elevation of the left atrial and pulmonary venous pressure is the reflectory constriction of the pulmonary arterioles (Kitayev’s reflex). Further, the development of endothelial dysfunction and pulmonary vessels remodeling with the phenomenon of “arterializations” of the pulmonary veins take place. The exact evaluation of the pulmonary vascular resistance value in the clinical practice is a difficult task. This parameter, being integrated, does not allow to evaluate the resistance values of pulmonary arterial and venous vessels in the conditions of pulmonary hypertension and to give exact characteristics of their changes, as a result. The mechanisms of development of the pulmonary venous hypertension could not be explicated using the simplified model of the pulmonary vasoconstriction, because the main features of the pulmonary circulation are the presence of arteriovenous and bronchopulmonary shunts, and pulsatile character of the blood flow. To understand the exact pathogenesis of this pathology the further fundamental investigation not only on the cell level, but also on organ and system levels are needed.

Full Text

Restricted Access

About the authors

V I Evlakhov

FSBSI «Institute of Experimental Medicine»

I Z Poyassov

FSBSI «Institute of Experimental Medicine»

V I Ovsyannikov

FSBSI «Institute of Experimental Medicine»

References

  1. Berthelot E., Bailly M.T., Hatimi S.E., Robard I., Rezgui H., Bouchachi A., Montani D., Sitbon O., Chemla D., Assayag P. Pulmonary hypertension due to left heart disease // Arch. Cardiovasc. Dis. 2017. Vol. 110, No 6-7. P. 420-431.
  2. Clark C.B., Horn E.M. Group 2 Pulmonary Hypertension: Pulmonary Venous Hypertension: Epidemiology and Pathophysiology // Cardiol Clin. 2016. Vol. 34, No 3. P. 401-411.
  3. Kulik T.J. Pulmonary hypertension caused by pulmonary venous hypertension // Pulm. Circ. 2014. Vol. 4, No 4. P. 581-595.
  4. Dixon D.D., Trivedi A., Shah S.J. Combined post- and precapillary pulmonary hypertension in heart failure with preserved ejection fraction // Heart Fail. Rev. 2016. Vol. 21, No 3. P. 285-297.
  5. Farr G., Shah K., Markley R., Abbate A., Salloum F.N., Grinnan D. Development of Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction // Prog. Cardiovasc. Dis. 2016. Vol. 59, No 1. P. 52-58.
  6. Guazzi M., Labate V. Pulmonary Hypertension in Heart Failure Patients: Pathophysiology and Prognostic Implications // Curr. Heart Fail. Rep. 2016. Vol. 13, No 6. P. 281-294.
  7. Кирилова В.В. Ранняя ультразвуковая диагностика венозного застоя в малом круге кровообращения у пациентов с хронической сердечной недостаточностью // Сердечная недостаточность. 2017. Т. 18, № 3. С. 208-212. [Kirillova V.V. Early ultrosounds diagnostocs of the venous congestion in the pulmonary circulations in ratients with chronic left heart failure // Heart failure. 2017. Vol. 18, No 3. pp. 208-212]
  8. Грицюк А.И. Пособие по кардиологии. Киев: Здоров’я, 1984. 560 с. [Gricuk A.I. Textbook of cardiology. Kiev: Zdorovia, 1984. 560 p.]
  9. Гайтон А.К., Холл Дж.Э. Медицинская физиология / пер. с англ. под ред. В.И. Кобрина. М.: Логосфера, 2008. 1296 c. [Guyton A.K., Hall G.E. Medical Physiology / еng. transl. edited by V.I. Kobrin. Moscow: Logosphera, 2008. 1296 p.]
  10. Berne R.M., Levy M.N. Cardiovascylar Physiology. 6th ed. St. Louis: Mosby Inc. 2008. 600 p.
  11. Ganong W.F. Review of Medical Physiology. 21st ed. New York: Mc Graw-Hill Companies, 2003. 624 p.
  12. Hollander E.H., Dobson G.M., Wang J.J., Parker K.H., Tyberg J.V. Direct and series transmission of left atrial pressure perturbations to the pulmonary artery: a study using wave-intensity analysis // Am. Journ. Physiol. (Heart Circ. Physiol.). 2004. Vol. 286, No 2. P. H267-H275.
  13. MacIver D.H., Adeniran I., MacIver I.R., Revell A., Zhang H. Physiological mechanisms of pulmonary hypertension // Am. Heart Journ. 2016. Vol. 180, No 1. P. 1-11.
  14. Ткаченко Б.И. (ред.) Нормальная физиология человека: учебник для высших учебных заведений. 2-е изд., испр. и доп. М.: Медицина. 2005. 928 c. [Tkachenko B.I. (еd.) The human normal physiology: Textbook for medical universities. 2nd ed., corr. and compl. Moscow: Medicine, 2005. 928 p.]
  15. Гриппи М. Патофизиология легких: пер. с англ. М.: Бином, 1997. 344 с. [Grippi M. Pulmonary pathophysiology: еng. Transl. Moscow: Binom, 1997. 344 p.]
  16. Doutreleau S., Canuet M., Enache I., Di Marco P., Lonsdorfer E., Oswald-Mammoser M., Charloux A. Right Heart Hemodynamics in Pulmonary Hypertension - An Echocardiography and Catheterization Study // Circ. Journ. 2016. Vol. 80, No 9. P. 2019-2025.
  17. Евлахов В.И., Поясов И.З., Овсянников В.И., Шайдаков Е.В. Современные аспекты регуляции легочного кровообращения в норме и при экспериментальной патологии // Мед. акад. журнал. 2017. Т. 13, № 4. С. 54-65. [Evlakhov V.I., Poyassov I.Z., Ovsyannikov V.I., Shaidakov E.V. The modern aspects of the pulmonary circulation regulation in normal conditions and experimental pathology // Med. Acad. Journ. 2013. Vol. 13, No 4. pp. 54-65].
  18. Евлахов В.И., Поясов И.З., Овсянников В.И., Шайдаков Е.В. Легочная гемодинамика при хронической тромбоэмболической легочной гипертензии // Рос. физиол. журн. им. И.М. Сеченова. 2017. Т. 103, № 11. С. 1225-1240. [Evlakhov V.I., Poyassov I.Z., Ovsyannikov V.I., Shaidakov E.V. The pulmonary hemodynamics in chronic thromboembolic pulmonary hypertension // Ros. Fiziol. Journ. named I.M. Setchenov. 2017. Vol. 103, No 11. pp. 1225-1240].
  19. Kasai H., Matsumura A., Sugiura T., Shigeta A., Tanabe N., Yamamoto K., Miwa H., Ema R., Sakao S., Tatsumi K. Mean Pulmonary Artery Pressure Using Echocardiography in Chronic Thromboembolic Pulmonary Hypertension // Circ. Journ. 2016. Vol. 80, No 5. P. 1259-1264.
  20. Aduen J.F., Castello R., Daniels J.T., Diaz J.A., Safford R.E., Heckman M.G., Crook J.E., Burger C.D. Accuracy and precision of three echocardiographic methods for estimating mean pulmonary artery pressure // Chest. 2016. Vol. 139, No 2. P. 347-352.
  21. Friedberg M.K., Feinstein J.A., Rosenthal D.N. A novel echocardiographic Doppler method for estimation of pulmonary arterial pressures // Journ. Amer. Soc. Echocardiogr. 2006. Vol. 19, No 5. P. 559-462.
  22. Wang Z., Chesler N.C. Pulmonary vascular mechanics: important contributors to the increased right ventricular afterload of pulmonary hypertension // Exp. Physiol. 2013. Vol. 98, No 8. P. 1267-1273.
  23. Кузнецов С.Л., Мушкамбаров Н.Н. Гистология, цитология и эмбриология: учебник для медицинских вузов. М.: ООО «Медицинское информационное агентство», 2007. 723 c. [Kuznetcov S.L., Mushkambarov N.N. Histology, cytology and embryology: textbook for medical universities. Moscow: OOO “Medical informational agency”, 2007. 723 p.]
  24. Gao Y., Raj J.U. Role of veins in regulation of pulmonary circulation // Amer. Journ. Physiol. (Lung Cell Mol. Physiol.). 2005. Vol. 288, No 2. P. L213-L226.
  25. Peng G., Li S., Hong W., Hu J., Jiang Y., Hu G., Zou Y., Zhou Y., Xu J., Ran P. Chronic Hypoxia Increases Intracellular Ca(2+) Concentration via Enhanced Ca(2+) Entry Through Receptor-Operated Ca(2+) Channels in Pulmonary Venous Smooth Muscle // Cells. Circ. Journ. 2015. Vol. 79, No 9. P. 2058-2068.
  26. Зефиров А.Л., Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология). Казань: Арт-кафе, 2010. 271 c. [Zefirov A.L., Sitdikova G.F. Ion channels of the excitable cell (the structure, function, pathology). Kazan: Art-cafe, 2010. 271 p.]
  27. Zhang Z., Wen Y., Du J., Yu Y., Liu S., Wu X., Zhao H. Effects of mechanical stretch on the functions of BK and L-type Ca2+ channels in vascular smooth muscle cells // Journ. Biomech. 2018. Vol. 67, No 1. P. 18-23.
  28. Jairaman A., Prakriya M. Molecular pharmacology of store-operated CRAC channels // Channels (Austin). 2013. Vol. 7, No 5. P. 402-414.
  29. Wang Q., Wang D., Yan G., Sun L., Tang C. TRPC6 is required for hypoxia-induced basal intracellular calcium concentration elevation, and for the proliferation and migration of rat distal pulmonary venous smooth muscle cells // Mol. Med. Rep. 2016. Vol. 13, No 2. P. 1577-1585.
  30. Hussain A., Suleiman M.S., George S.J., Loubani M., Morice A. Hypoxic Pulmonary Vasoconstriction in Humans: Tale or Myth // Open Cardiovasc. Med. Journ. 2017. Vol. 11, No 1. P. 1-13.
  31. Salman I.M. Major Autonomic Neuroregulatory Pathways Underlying Short- and Long-Term Control of Cardiovascular Function // Curr. Hypertens. Rep. 2016. Vol. 18, No 3. P. 18-27.
  32. Vaillancourt M., Chia P., Sarji S., Nguyen J., Hoftman N., Ruffenach G., Eghbali M., Mahajan A., Umar S. Autonomic nervous system involvement in pulmonary arterial hypertension // Respir Res. 2017. Vol. 18, No 1. P. 201-216.
  33. Wojtarowicz A., Podlasz P., Czaja K. Adrenergic and cholinergic innervation of pulmonary tissue in the pig // Folia Morphol. (Warsz.). 2003. Vol. 62, No 3. P. 215-218.
  34. Görnemann T., von Wenckstern H., Kleuser B., Villalón C.M., Centurión D., Jähnichen S., Pertz H.H. Characterization of the postjunctional alpha 2C-adrenoceptor mediating vasoconstriction to UK14304 in porcine pulmonary veins // Br. Journ. of Pharmacol. 2007. Vol. 151, No 2. P. 186-194.
  35. Görnemann T., Villalón C.M., Centurión D., Pertz H.H. Phenylephrine contracts porcine pulmonary veins via alpha(1B)-, alpha(1D)-, and alpha(2)-adrenoceptors // Eur. Journ. Pharmacol. 2009. Vol. 613, No 1-3. P. 86-92.
  36. Rieg A.D., Rossaint R., Uhlig S., Martin C. Cardiovascular agents affect the tone of pulmonary arteries and veins in precision-cut lung slices // PLoS One. 2011. Vol. 6, No 12. P. 1-9.
  37. Orii R., Sugawara Y., Sawamura S., Yamada Y. M3-muscarinic receptors mediate acetylcholine-induced pulmonary vasodilation in pulmonary hypertension // Biosci. Trends. 2010. Vol. 4, No 5. P. 260-266.
  38. Ding X., Murray P.A. Regulation of pulmonary venous tone in response to muscarinic receptor activation // Am. Journ. Physiol. (Lung Cell Mol. Physiol.). 2005. Vol. 288, No 1. P. L131-L140.
  39. Walch L., Gascard J.P., Dulmet E., Brink C., Norel X. Evidence for a M(1) muscarinic receptor on the endothelium of human pulmonary veins // Br. Journ. Pharmacol. 2000. Vol. 130, No 1. P. 73-78.
  40. Cooke J.P. Imaging Vascular Nicotine Receptors A New Window Onto Vascular Disease // JACC: Cardiovascular imaging. 2012. Vol. 5, No 5. P. 537-539.
  41. Li D.J., Huang F., Ni M., Fu H., Zhang L.S., Shen F.M. α7 Nicotinic Acetylcholine Receptor Relieves Angiotensin II-Induced Senescence in Vascular Smooth Muscle Cells by Raising Nicotinamide Adenine Dinucleotide-Dependent SIRT1 // Arterioscler. Thromb. Vasc. Biol. 2016. Vol. 36, No 8. P. 1566-1476.
  42. Toda N., Okamura T. Recent advances in research on nitrergic nerve-mediated vasodilatation // Pflugers Arch. 2015. Vol. 467, No 6. P. 1165-1178.
  43. Дворецкий Д.П., Ткаченко Б.И. Гемодинамика в легких. М.: Медицина, 1987. 288 с. [Dvoretsky D.P., Tkachenko B.I. Pulmonary hemodynamics. Moscow: Medicine, 1987. 288 p.]
  44. Budhiraja R., Tuder R., Hassoun P. Endothelial dysfunction in pulmonary hypertension // Circulation. 2004. Vol. 109, No 1. P. 159-165.
  45. Шайдаков Е.В., Евлахов В.И. Роль эндотелия в патогенезе хронической постэмболической легочной гипертензии // Ангиология и сосудистая хирургия. 2016. Т. 1, № 1. С. 22-26. [Shaidakov E.V., Evlakhov V.I. The role of the endothelium in the pahogenesis of the chronic thromboembolic pulmonary hypertension // Angiology and vascular surgery. 2016. Vol. 1, No 1. pp. 22-26].
  46. Galie N., Manes A., Branzi A. The endothelin system in pulmonary arterial hypertension // Cardiovasc. Res. 2006. Vol. 61, No 1. P. 227-237.
  47. Gao Y., Chen T., Raj J.U. Endothelial and Smooth Muscle Cell Interactions in the Pathobiology of Pulmonary Hypertension // Am. Journ. Respir. Cell Mol. Biol. 2016. Vol. 54, No 4. P. 451-460.
  48. Fujimoto Y., Urashima T., Kawachi F., Akaike T., Kusakari Y., Ida H., Minamisawa S. Pulmonary hypertension due to left heart disease causes intrapulmonary venous arterialization in rats // Journ. Thorac. Cardiovasc. Surg. 2016. Vol. 154, No 5. P. 1742-1753.
  49. Kato H., Fu Y.Y., Zhu J., Wang L., Aafaqi S., Rahkonen O., Slorach C., Traister A., Leung C.H., Chiasson D., Mertens L., Benson L., Weisel R.D., Hinz B., Maynes J.T., Coles J.G., Caldarone C.A. Pulmonary vein stenosis and the pathophysiology of "upstream" pulmonary veins // Journ. Thorac. Cardiovasc. Surg. 2014. Vol. 148, No 1. P. 245-253.
  50. Hunt J.M., Bethea B., Liu X., Gandjeva A., Mammen P.P., Stacher E., Gandjeva M.R., Parish E., Perez M., Smith L., Graham B.B., Kuebler W.M., Tuder R.M. Pulmonary veins in the normal lung and pulmonary hypertension due to left heart disease // Am. Journ. Physiol. (Lung Cell Mol. Physiol.) 2013. Vol. 305, No 3. P. L725-L736.
  51. Dorfmüller P., Günther S., Ghigna M.R., Thomas de Montpréville V., Boulate D., Paul J.F., Jaïs X., Decante B., Simonneau G., Dartevelle P., Humbert M., Fadel E., Mercier O. Microvascular disease in chronic thromboembolic pulmonary hypertension: a role for pulmonary veins and systemic vasculature // Eur. Respir. Journ. 2014. Vol. 44, No 5. P. 1275-1288.
  52. Presson R.G. Jr., Baumgartner W.A. Jr., Peterson A.J., Glenny R.W., Wagner W.W. Jr. Pulmonary capillaries are recruited during pulsatile flow // Journ. Appl. Physiol. 2002. Vol. 92, No 3. P. 1183-1190.
  53. Поясов И.З. Функции органных сосудов при пульсирующем кровотоке // Рос. Физиол. журн. им. И.М. Сеченова. 2011. Т. 97, № 1. С. 35-46. [Poyassov I.Z. The functions of the organ vessels in the pulsatile flow conditions // Ros. Fiziol. Journ. named I.M. Setchenov. 2011. Vol. 97, No 1. pp. 35-46].
  54. Dull R.O., Cluff M., Kingston J., Hill D., Chen H., Hoehne S., Malleske D.T., Kaur R. Lung heparin sulfates modulate K(fc) during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction // Am. Journ. Physiol. (Lung Cell Mol. Physiol.). 2012. Vol. 302, No 9. P. L816-L828.
  55. Ketabchi F., Ghofrani H.A., Schermuly R.T., Seeger W., Grimminger F., Egemnazarov B., Shid-Moosavi S.M., Dehghani G.A., Weissmann N., Sommer N. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction // Respir Res. 2012. Vol. 31, No 1. P. 7-13.
  56. Ketabchi F., Karimi Z., Shid-Moosavi S.M. Sustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist // Iran Journ. Med. 2014. Vol. 39, No 3. P. 277-281.
  57. Евлахов В.И., Поясов И.З., Шайдаков Е.В. Гемодинамика в легких при экспериментальной тромбоэмболии легочной артерии на фоне блокады альфа-адренорецепторов // Рос. Физиол. журн. им. И.М. Сеченова. 2016. Т. 102, № 7. С. 815-824. [Evlakhov V.I., Poyassov I.Z., Shaidakov E.V. The pulmonary hemodynamics after experimental pulmonary embolism and the blockade of alpha-adrenoceptors // Ros. Fiziol. Journ. named I.M. Setchenov. 2016. Vol. 102, No 7, pp. 815-824].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Evlakhov V.I., Poyassov I.Z., Ovsyannikov V.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies