Diseases associated with complement system dysregulation and the prospects of their treatment

Open Access Open Access
Restricted Access Subscription Access

Abstract


The lack of pharmaceutical agents that could modulate complement activation is one of the most serious problems in modern medical practice. Meanwhile, the complement system plays a significant role in the pathogenesis of numerous diseases such as age-related macular degeneration (degenerative eye disease, which is the main cause of blindness in the elderly), kidney diseases such as atypical hemolytic-uremic syndrome and membranoproliferative glomerulonephritis type II, paroxysmal nocturnal hemoglobinuria (Marchiafava-Micheli disease), and hereditary angioedema. The complement and its components are involved in the development and progression of autoimmune pathological processes, such as systemic lupus erythematosus, rheumatoid arthritis, and autoimmune hemolytic anemia; neurodegenerative and neoplastic diseases; and complications after heart attacks, strokes, and transplants. This review considers the involvement of complements in the pathological processes, existing methods of treatment, and the prospects for the development of drugs that can correct the work of complement - the most important component of innate immunity.

E S Umnyakova

Institute of Experimental Medicine

L D Pashinskaya

Saint Petersburg State University

I A Krenev

Saint Petersburg State University

S V Legkovoy

Saint Petersburg State University

V N Kokryakov

Institute of Experimental Medicine; Saint Petersburg State University

M N Berlov

Institute of Experimental Medicine; Saint Petersburg State University

  1. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol. 2015;6:262. doi: 10.3389/fimmu.2015.00262.
  2. Erdei A, Sandor N, Macsik-Valent B, et al. The versatile functions of complement C3-derived ligands. Immunol Rev. 2016;274(1):127-140. doi: 10.1111/imr.12498.
  3. Tomlinson S, Taylor PW, Morgan BP, Luzio JP. Killing of gram-negative bacteria by complement. Fractionation of cell membranes after complement C5b-9 deposition on to the surface of Salmonella Minnesota Re595. Biochem J. 1989;263(2):505-511. doi: 10.1042/bj2630505.
  4. Bloch EF, Knight EM, Carmon T, et al. C5b-7 and C5b-8 precursors of the membrane attack complex (C5b-9) are effective killers of E. Coli J5 during serum incubation. Immunol Invest. 2009;26(4):409-419. doi: 10.3109/08820139709022698.
  5. Berends ET, Dekkers JF, Nijland R, et al. Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. Cell Microbiol. 2013;15(12):1955-1968. doi: 10.1111/cmi.12170.
  6. Hoover DL, Berger M, Nacy CA, et al. Killing of Leishmania tropica amastigotes by factors in normal human serum. J Immunol. 1984;132(2):893-897.
  7. Koski CL, Ramm LE, Hammer CH, et al. Cytolysis of nucleated cells by complement: cell death displays multi-hit characteristics. Proc Natl Acad Sci U S A. 1983;80(12):3816-3820. doi: 10.1073/pnas.80.12.3816.
  8. Kim SH, Carney DF, Hammer CH, Shin ML. Nucleated cell killing by complement: effects of C5b-9 channel size and extracellular Ca2+ on the lytic process. J Immunol. 1987;138(5):1530-1536.
  9. Nauta AJ, Daha MR, Tijsma O, et al. The membrane attack complex of complement induces caspase activation and apoptosis. Eur J Immunol. 2002;32(3):783. doi: 10.1002/1521-4141(200203)32:3<783::aid-immu783>3.0.co;2-q.
  10. Li CKN. Proof of the one-hit mechanism of complement-induced lysis. Immunochemistry. 1975;12(1):89-92. doi: 10.1016/0019-2791(75)90054-3.
  11. Hein E, Garred P. The Lectin Pathway of Complement and Biocompatibility. Adv Exp Med Biol. 2015;865:77-92. doi: 10.1007/978-3-319-18603-0_5.
  12. Lintner KE, Wu YL, Yang Y, et al. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases. Front Immunol. 2016;7:36. doi: 10.3389/fimmu.2016.00036.
  13. Bohlson SS, O’Conner SD, Hulsebus HJ, et al. Complement, c1q, and c1q-related molecules regulate macrophage polarization. Front Immunol. 2014;5:402. doi: 10.3389/fimmu.2014.00402.
  14. Kishore U, Gaboriaud C, Waters P, et al. C1q and tumor necrosis factor superfamily: modularity and versatility. Trends Immunol. 2004;25(10):551-561. doi: 10.1016/j.it.2004.08.006.
  15. Nauta AJ, Bottazzi B, Mantovani A, et al. Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur J Immunol. 2003;33(2):465-473. doi: 10.1002/immu.200310022.
  16. Roumenina LT, Popov KT, Bureeva SV, et al. Interaction of the globular domain of human C1q with Salmonella typhimurium lipopolysaccharide. Biochim Biophys Acta. 2008;1784(9):1271-1276. doi: 10.1016/j.bbapap.2008.04.029.
  17. Flierman R, Daha MR. The clearance of apoptotic cells by complement. Immunobiology. 2007;212(4-5):363-370. doi: 10.1016/j.imbio.2006.11.005.
  18. Trouw LA, Blom AM, Gasque P. Role of complement and complement regulators in the removal of apoptotic cells. Mol Immunol. 2008;45(5):1199-1207. doi: 10.1016/j.molimm.2007.09.008.
  19. Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9(10):729-740. doi: 10.1038/nri2620.
  20. Merle NS, Noe R, Halbwachs-Mecarelli L, et al. Complement System Part II: Role in Immunity. Front Immunol. 2015;6:257. doi: 10.3389/fimmu.2015.00257.
  21. Panelius J, Meri S. Complement system in dermatological diseases - fire under the skin. Front Med (Lausanne). 2015;2:3. doi: 10.3389/fmed.2015.00003.
  22. Tichaczek-Goska D. Deficiencies and excessive human complement system activation in disorders of multifarious etiology. Adv Clin Exp Med. 2012;21(1):105-114.
  23. Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol. 2013;190(8):3831-3838. doi: 10.4049/jimmunol.1203487.
  24. Liszewski MK, Java A, Schramm EC, Atkinson JP. Complement Dysregulation and Disease: Insights from Contemporary Genetics. Annu Rev Pathol. 2017;12:25-52. doi: 10.1146/annurev-pathol-012615-. 044145.
  25. Leffler J, Bengtsson AA, Blom AM. The complement system in systemic lupus erythematosus: an update. Ann Rheum Dis. 2014;73(9):1601-1606. doi: 10.1136/annrheumdis-2014-205287.
  26. Yin Y, Wu X, Shan G, Zhang X. Diagnostic value of serum anti-C1q antibodies in patients with lupus nephritis: a meta-analysis. Lupus. 2012;21(10):1088-1097. doi: 10.1177/0961203312451202.
  27. Edwards AO, Ritter R, 3rd, Abel KJ, et al. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308(5720):421-424. doi: 10.1126/science.1110189.
  28. Hageman GS, Anderson DH, Johnson LV, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A. 2005;102(20):7227-7232. doi: 10.1073/pnas.0501536102.
  29. Haines JL, Hauser MA, Schmidt S, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308(5720):419-421. doi: 10.1126/science.1110359.
  30. Klein RJ. Complement Factor H Polymorphism in Age-Related Macular Degeneration. Science. 2005;308(5720):385-389. doi: 10.1126/science.1109557.
  31. Shih AR, Murali MR. Laboratory tests for disorders of complement and complement regulatory proteins. Am J Hematol. 2015;90(12):1180-1186. doi: 10.1002/ajh.24209.
  32. Carugati A. C1-inhibitor deficiency and angioedema. Mol Immunol. 2001;38(2-3):161-173. doi: 10.1016/s0161-5890(01)00040-2.
  33. Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis - a new look at an old entity. N Engl J Med. 2012;366(12):1119-1131. doi: 10.1056/NEJMra1108178.
  34. Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361(17):1676-1687. doi: 10.1056/NEJMra0902814.
  35. Malina M, Roumenina LT, Seeman T, et al. Genetics of hemolytic uremic syndromes. Presse Med. 2012;41(3 Pt 2):e105-114. doi: 10.1016/j.lpm.2011.10.028.
  36. Marinozzi MC, Vergoz L, Rybkine T, et al. Complement factor B mutations in atypical hemolytic uremic syndrome-disease-relevant or benign? J Am Soc Nephrol. 2014;25(9):2053-2065. doi: 10.1681/ASN.2013070796.
  37. Dragon-Durey MA, Sethi SK, Bagga A, et al. Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J Am Soc Nephrol. 2010;21(12):2180-2187. doi: 10.1681/ASN.2010030315.
  38. Bresin E, Rurali E, Caprioli J, et al. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J Am Soc Nephrol. 2013;24(3):475-486. doi: 10.1681/ASN.2012090884.
  39. Fakhouri F, Fremeaux-Bacchi V, Noel LH, et al. C3 glomerulopathy: a new classification. Nat Rev Nephrol. 2010;6(8):494-499. doi: 10.1038/nrneph.2010.85.
  40. Dragon-Durey MA, Blanc C, Marinozzi MC, et al. Autoantibodies against complement components and functional consequences. Mol Immunol. 2013;56(3):213-221. doi: 10.1016/j.molimm.2013.05.009.
  41. Servais A, Noel LH, Roumenina LT, et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 2012;82(4):454-464. doi: 10.1038/ki.2012.63.
  42. Parker CJ. Management of paroxysmal nocturnal hemoglobinuria in the era of complement inhibitory therapy. Hematology Am Soc Hematol Educ Program. 2011;2011:21-29. doi: 10.1182/asheducation-2011.1.21.
  43. Berentsen S. Role of Complement in Autoimmune Hemolytic Anemia. Transfus Med Hemother. 2015;42(5):303-310. doi: 10.1159/000438964.
  44. Alexander JJ, Anderson AJ, Barnum SR, et al. The complement cascade: Yin-Yang in neuroinflammation - neuro-protection and -degeneration. J Neurochem. 2008;107(5):1169-1187. doi: 10.1111/j.1471-4159.2008.05668.x.
  45. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821-852. doi: 10.1146/annurev.immunol.23.021704.115835.
  46. Markiewski MM, DeAngelis RA, Lambris JD. Complexity of complement activation in sepsis. J Cell Mol Med. 2008;12(6A):2245-2254. doi: 10.1111/j.1582-4934.2008.00504.x.
  47. Diepenhorst GM, van Gulik TM, Hack CE. Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies. Ann Surg. 2009;249(6):889-899. doi: 10.1097/SLA.0b013e3181a38f45.
  48. Кокряков В.Н., Алешина Г.М., Берлов М.Н., и др. Антимикробные пептиды животных как молекулярные факторы иммунитета // Российский иммунологический журнал. - 2014. - T. 8. - № 3. - С. 325-328. [Kokryakov VN, Aleshina GM, Berlov MN, et al. Animal antimicrobial peptides as molecular factors of the immunity. Russ J Immunol. 2014;8(3):325-328. (In Russ.)]
  49. Otvos L, Jr. Immunomodulatory effects of anti-microbial peptides. Acta Microbiol Immunol Hung. 2016;63(3):257-277. doi: 10.1556/030.63.2016.005.
  50. Proha´szka Zn, Ne´met K, Csermely Pt, et al. Defensins purified from human granulocytes bind C1q and activate the classical complement pathway like the transmenbrane glycoprotein gq41 of HIV-1. Mol Immunol. 1997;34(11):809-816. doi: 10.1016/s0161-5890(97)00097-7.
  51. Bhat S, Song YH, Lawyer C, Milner SM. Modulation of the complement system by human beta-defensin 2. J Burns Wounds. 2007;5:e10.
  52. Groeneveld TW, Ramwadhdoebe TH, Trouw LA, et al. Human neutrophil peptide-1 inhibits both the classical and the lectin pathway of complement activation. Mol Immunol. 2007;44(14):3608-3614. doi: 10.1016/j.molimm.2007.03.003.
  53. van den Berg RH, Faber-Krol MC, van Wetering S, et al. Inhibition of activation of the classical pathway of complement by human neutrophil defensins. Blood. 1998;92(10):3898-3903.
  54. Chen J, Xu XM, Underhill CB, et al. Tachyplesin activates the classic complement pathway to kill tumor cells. Cancer Res. 2005;65(11):4614-4622. doi: 10.1158/0008-5472.CAN-04-2253.
  55. Умнякова Е.С., Леонова Т.С., Берлов М.Н., Кокряков В.Н. Взаимодействие антимикробных пептидов с белком комплемента C1q // Медицинский академический журнал. - 2016. - Т. 16. - № 4. - С. 241-242. [Umnyakova ES, Leonova TS, Berlov MN, Kokryakov VN. Vzaimodeystvie antimikrobnykh peptidov s belkom komplementa C1q. Medical academic journal. 2016;16(4):241-242. (In Russ.)]
  56. Умнякова Е.С., Берлов М.Н., Кокряков В.Н. Дефенсины как регуляторы системы комплемента // Российский иммунологический журнал. - 2014. - T. 8. - № 3. - С. 414-417. [Umnyakova ES, Berlov MN, Kokryakov VN. Defensins as regulators of the complement system. Russ J Immunol. 2014;8(3):414-417. (In Russ.)]
  57. Берлов М.Н., Умнякова Е.С., Леонова Т.С., и др. Взаимодействие ареницина-1 с белком С1q // Биоорганическая химия. - 2015. - Т. 41. - № 6. - С. 664-668. [Berlov MN, Umnyakova ES, Leonova TS, et al. Interaction of arenicin-1 with C1q protein. Bioorg Khim. 2015;41(6):664-648. (In Russ.)]. doi: 10.7868/S0132342315060032.
  58. Берлов М.Н., Умнякова Е.С., Леонова Т.С., и др. Действие антимикробных пептидов на активацию системы комплемента // Российский иммунологический журнал. - 2016. - Т. 10. - № 2-1. - С. 75-77. [Berlov MN, Umnyakova ES, Leonova TS, et al. Deystvie antimikrobnykh peptidov na aktivatsiyu sistemy komplementa. Russ J Immunol. 2016;10(2-1):75-77. (In Russ.)]
  59. Sahu A. Compstatin, a peptide inhibitor of complement, exhibits species-specific binding to complement component C3. Mol Immunol. 2003;39(10):557-566. doi: 10.1016/s0161-5890(02)00212-2.
  60. Soulika AM, Holland MC, Sfyroera G, et al. Compstatin inhibits complement activation by binding to the beta-chain of complement factor 3. Mol Immunol. 2006;43(12):2023-2029. doi: 10.1016/j.molimm.2005.12.002.

Views

Abstract - 55

PDF (Russian) - 0

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2018 Umnyakova E.S., Pashinskaya L.D., Krenev I.A., Legkovoy S.V., Kokryakov V.N., Berlov M.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.