Inflammatory disorders in the pathogenesis of Charcot-Marie-Tooth hereditary polyneuropathy

Abstract


In our review, we discuss the inflammatory changes in the pathophysiology of Charcot-Marie-Tooth hereditary polyneuropathy, and this matter is still under further evaluation. Lipid oxidation, inflammatory changes, and blood inflammation agent (e.g., cytokines) concentration changes are important for the pathogenesis of this disorder. Several clinical cases of acute or chronic combination of hereditary and inflammatory polyneuropathies are identified. These clinical cases may be suspected when the typical course of Charcot-Marie-Tooth disease changed to rapid worsening of motor symptoms, inflammatory changes, and pain syndrome. Thus, anti-inflammatory treatment should be considered in these cases.

Наследственная моторно-сенсорная полиневропатия Шарко - Мари - Тута (ШМТ) представляет собой гетерогенную группу врожденных дегенеративных заболеваний со сходным клиническим фенотипом, характеризующимся комплексным патогенезом, существенной составной частью которого являются воспалительные нарушения [1, 2]. В настоящее время идентифицировано более 80 генов, ассоциированных с развитием этого заболевания [3]. ШМТ традиционно подразделяется на два варианта: демиелинизирующий тип (ШМТ1), для которого характерно существенное замедление скорости проведения импульса (СПИ), обусловленное демиелинизацией, и нейрональный тип (ШМТ2), при котором наблюдаются нормальные СПИ и аксонопатия [4, 5]. В подавляющем большинстве случаев оба варианта ШМТ наследуются по аутосомно-доминантному типу. В связи со значительным прогрессом в области генетики этого заболевания рассматривается необходимость внедрения новой классификации ШМТ, в основу которой положен генетический принцип [6]. «Золотым стандартом» инструментальной диагностики ШМТ является стимуляционная электронейромиография [7], при которой наблюдаются типичные изменения вызванных моторных ответов (рис. 1). При диагностическом поиске также применяют ультразвуковое исследование периферических нервов; описывается значительное диффузное утолщение нервов при ШМТ [8-10] (рис. 2). Также используют магнитно-резонансную томографию, компьютерную паллестезиометрию и биопсию периферических нервов, которые играют важную роль в диагностическом процессе заболевания [11-16]. Характерные клинические особенности ШМТ представлены слабостью и атрофией дистальных мышц конечностей с нарушенной или сохранной чувствительностью, полой стопой, снижением или утратой сухожильных рефлексов. Симптомы заболевания появляются уже на первом десятилетии жизни и в дальнейшем медленно нарастают с разной степенью выраженности. Рассматриваются разные варианты клинического течения ШМТ с развитием различных вариантов острого, подострого и хронического воспаления периферических нервов, а также изменением уровня стресс-индуцированных медиаторов и активацией окислительного стресса [14, 16, 19-29]. Описаны пациенты с ШМТ, у которых по данным биопсии периферических нервов обнаруживались характерные для хронической воспалительной демиелинизирующей полиневропатии признаки с формированием воспалительных инфильтратов; показано, что проведение курса противовоспалительной терапии приводит к клиническому улучшению у этих больных [30, 31]. Данные варианты ШМТ наблюдаются не только у взрослых пациентов, но и в педиатрической практике [28]. По данным метаанализа литературы, на 2016 г. имелось 63 сообщения, в которых описывались случаи наследственной полиневропатии в сочетании с воспалительной; ШМТ 1-го типа упоминается в этих сообщениях чаще [17]. Результаты исследований биохимических показателей у больных с ШМТ демонстрируют повышение уровня глутатион-S-трансфераз и снижение содержания глутатиона, что в свою очередь приводит к увеличению концентрации окисленного глутатиона и последующей митохондриальной дисфункции [32, 33]. Сходные изменения отмечаются при других наследственных хронических заболеваниях, в частности при миопатии Дюшенна [34]. Экспериментальные исследования на мышах обнаружили связь между существующей периферической невропатией и низким уровнем глутатиона, глутатионпероксидазы и глутатионредуктазы, а также активацией процессов перекисного окисления липидов (ПОЛ), что, несомненно, негативно влияет на антиоксидантный статус [35]. У детей с ШМТ 1-го типа показано повышение уровня супероксиддисмутазы (СОД) и глутатион-S-трансферазы по сравнению со здоровыми детьми [36]. Активация ПОЛ у пациентов с ШМТ коррелирует с увеличением продукции провоспалительных цитокинов, в частности IL-1b [37]. Существуют экспериментальные доказательства макрофагзависимой стимуляции воспалительных процессов и поражения миелина при ШМТ 1-го типа [38]. Напротив, подавление активности макрофагов в экспериментальных работах на мышах с моделью ШМТ приводило к респрутингу аксонов и, как следствие, к повышению амплитуды вызванных моторных ответов [39]. По результатам биопсии периферических нервов у больных с ШМТ в ряде случаев обнаруживали макрофаг-ассоциированную демиелинизацию [16]. В ряде работ [34, 40] рассматривается роль хронического окислительного стресса и воспаления в патогенезе прогрессирующей потери мышечных волокон у пациентов с ШМТ, превосходящей способность мышц к возможной регенерации [34, 40]. У всех пациентов мужского пола (100 %) с ШМТ 1-го типа отмечается повышение уровня антител к периферическому миелиновому белку 22 [41]. Представленные патохимические процессы безусловно усугубляют имеющиеся у пациентов с ШМТ нарушения и способствуют дальнейшему прогрессированию этого дегенеративного заболевания. Логично предположить, что снижение интенсивности обнаруженных патологических реакций, например оксидативного стресса, может замедлить скорость дегенеративного процесса в нервной системе и окажет положительный клинический эффект. В качестве возможных лекарственных средств, оказывающих влияние на вышеописанные патохимические реакции, в том числе процессы ПОЛ, рассматриваются антиоксиданты. Вместе с тем согласно данным клинических исследований [42, 43] применение витамина С при ШМТ не имело положительного клинического эффекта, притом что наблюдалась нормализация иммунологических показателей, что, вероятно, связано с недостаточным воздействием витамина С на окислительно-восстановительное равновесие на уровне митохондрий. Применение мелатонина, антиоксидантные, гомеостатические и стресс-протективные свойства которого хорошо известны [44, 45], у детей с ШМТ привело к нормализации уровней СОД и глутатион-S-трансферазы и улучшению клинических показателей [36]. Заключение Патогенез наследственной моторно-сенсорной полиневропатии Шарко - Мари - Тута изучен не до конца. Известна важность процессов перекисного окисления липидов, воспалительных нарушений и увеличения или уменьшения гуморальных факторов воспаления, в том числе цитокинов. Описан ряд случаев сочетания наследственных, острых и хронических воспалительных полиневропатий. Данные патогенетические особенности заболевания позволяют предположить в случае быстрого ухудшения состояния больных с болезнью Шарко - Мари - Тута активацию воспалительных процессов, развитие болевого синдрома, что нехарактерно для клинического течения заболевания. В этом случае следует рассматривать вопрос о применении у пациентов противовоспалительной терапии. Авторы заявляют об отсутствии конфликта интересов. Исследование не имело финансовой поддержки.

V B Voitenkov

Pediatric Research and Clinical Center for Infectious Diseases

E V Ekusheva

Advanced Training Institute of the Federal Medical Biological Agency

N V Skripchenko

Pediatric Research and Clinical Center for Infectious Diseases

A V Klimkin

Pediatric Research and Clinical Center for Infectious Diseases

  1. Weis J, Claeys KG, Roos A, et al. Towards a functional pathology of hereditary neuropathies. Acta Neuropathol. 2017;133(4):493-515. doi: 10.1007/s00401-016-1645-y.
  2. Gabriel CM, Gregson NA, Wood NW, Hughes RAC. Immunological Study of Hereditary Motor and Sensory Neuropathy Type 1 A (HMSN1 A). J Peripher Nerv Syst. 2002;7(3):206-206. doi: 10.1046/j.1529-8027.2002.02026_6.x.
  3. Stojkovic T. Hereditary neuropathies: An update. Rev Neurol (Paris). 2016;172(12):775-778. doi: 10.1016/j.neurol.2016.06.007.
  4. Jani-Acsadi A, Ounpuu S, Pierz K, Acsadi G. Pediatric Charcot-Marie-Tooth disease. Pediatr Clin North Am. 2015;62(3):767-786. doi: 10.1016/j.pcl.2015.03.012.
  5. Dyck PJ. Lower Motor and Primary Sensory Neuron Diseases with Peroneal Muscular Atrophy. Arch Neurol. 1968;18(6):619. doi: 10.1001/archneur.1968.00470360041003.
  6. Magy L, Mathis S, Le Masson G, et al. Updating the classification of inherited neuropathies: Results of an international survey. Neurology. 2018;90(10):e870-e876. doi: 10.1212/WNL.0000000000005074.
  7. Команцев В.Н., Скрипченко Н.В., Савина М.В. Клиническая электронейромиография при нейроинфекциях у детей // Педиатр. - 2011. - Т. 2. - № 2. - С. 34-37. [Komantsev VN, Skripchenko NV, Savina MV. Clinical electroneuromyography in neuroinfections in children. Pediatrician (Saint Petersburg). 2011;2(2):34-37. (In Russ.)]
  8. Sugimoto T, Ochi K, Hosomi N, et al. Ultrasonographic nerve enlargement of the median and ulnar nerves and the cervical nerve roots in patients with demyelinating Charcot-Marie-Tooth disease: distinction from patients with chronic inflammatory demyelinating polyneuropathy. J Neurol. 2013;260(10):2580-2587. doi: 10.1007/s00415-013-7021-0.
  9. Zaidman CM, Harms MB, Pestronk A. Ultrasound of inherited vs. acquired demyelinating polyneuropathies. J Neurol. 2013;260(12):3115-3121. doi: 10.1007/s00415-013-7123-8.
  10. Вуйцик Н.Б., Чечеткин А.О., Павлов Э.В., и др. Клинико-ультразвуковые и нейрофизиологические сопоставления при наследственной моторно-сенсорной невропатии // Анналы клинической и экспериментальной неврологии. - 2014. - Т. 8. - № 4. - С. 9-14. [Vuytsik NB, Chechetkin AO, Pavlov EV, et al. Clinical-ultrasound and neurophysiological comparisons in hereditary motor-sensory neuropathy. Annaly klinicheskoy i eksperimental’noy nevrologii. 2014;8(4):9-14. (In Russ.)]
  11. Oka N. Pathology of Charcot-Marie-Tooth Disease. Brain Nerve. 2016;68(1):21-29. doi: 10.11477/mf.1416200342.
  12. Салтыкова В.Г. Возможности высокоразрешающего ультразвукового исследования в диагностике болезни Шарко - Мари - Тута // Ультразвуковая и функциональная диагностика. - 2015. - № 5S. - С. 154-155. [Saltykova VG. Vozmozhnosti vysokorazreshayushchego ul’trazvukovogo issledovaniya v diagnostike bolezni Sharko-Mari-Tuta. Ultrasound & functional diagnostics. 2015;(5S):154-155. (In Russ.)]
  13. Глущенко Е.В., Шнайдер Н.А., Кантимирова Е.А., и др. Опыт организации диагностической и медико-социальной помощи больным с наследственной нейропатией Шарко - Мари - Тута в Красноярском крае // Нервно-мышечные болезни. - 2012. - № 1. - С. 41-53. [Gluschenko EV, Shnaider NA, Kantimirova EA, et al. Organization experience of diagnostic and medicosocial services for patients with Charcot-Marie-Tooth disease in Krasnoyarsk region. Neuromuscular diseases. 2012;(1):41-53. (In Russ.)]
  14. Carvalho AA, Vital A, Ferrer X, et al. Charcot-Marie-Tooth disease type 1A: clinicopathological correlations in 24 patients. J Peripher Nerv Syst. 2005;10(1):85-92. doi: 10.1111/j.1085-9489.2005.10112.x.
  15. Sinclair CDJ, Miranda MA, Cowley P, et al. MRI shows increased sciatic nerve cross sectional area in inherited and inflammatory neuropathies. J Neurol Neurosurg Psychiatry. 2010;82(11):1283-1286. doi: 10.1136/jnnp.2010.211334.
  16. Vital A, Vital C, Lagueny A, et al. Inflammatory demyelination in a patient with CMT1A. Muscle Nerve. 2003;28(3):373-376. doi: 10.1002/mus.10404.
  17. Rajabally YA, Adams D, Latour P, Attarian S. Hereditary and inflammatory neuropathies: a review of reported associations, mimics and misdiagnoses. J Neurol Neurosurg Psychiatry. 2016;87(10):1051-1060. doi: 10.1136/jnnp-2015-310835.
  18. Fujisawa M, Sano Y, Omoto M, et al. Charcot-Marie-Tooth disease type 2 caused by homozygous MME gene mutation superimposed by chronic inflammatory demyelinating polyneuropathy. Rinsho Shinkeigaku. 2017;57(9):515-520. doi: 10.5692/clinicalneurol.cn-001036.
  19. Gazulla J, Almarcegui C, Berciano J. Reversible inflammatory neuropathy superimposed on Charcot-Marie-Tooth type 1A disease. Neurol Sci. 2018;39(4):793-794. doi: 10.1007/s10072-017-3195-z.
  20. Попова Т.Е., Таппахов А.А., Николаева Т.Я., и др. Хроническая воспалительная демиелинизирующая полиневропатия у пациентки с болезнью Шарко - Мари - Тута 1а типа // Якутский медицинский журнал. - 2015. - № 4. - С. 106-109. [Popova TE, Tappakhov AA, Nikolaeva TY, et al. Chronic inflammatory demyelinating polyneuropathy in a patient with Charcot-Marie-Tooth type IA disease. Yakut medical journal. 2015;(4):106-109. (In Russ.)]
  21. Kume K, Deguchi K, Ikeda K, et al. Usefulness of the modified F-ratio for assessments of proximal conduction in chronic inflammatory demyelinating polyneuropathy superimposed on Charcot Marie-Tooth disease type 1A. J Neurol Sci. 2014;343(1-2):237-239. doi: 10.1016/j.jns.2014.05.046.
  22. Cottenie E, Menezes MP, Rossor AM, et al. Rapidly progressive asymmetrical weakness in Charcot-Marie-Tooth disease type 4J resembles chronic inflammatory demyelinating polyneuropathy. Neuromuscul Disord. 2013;23(5):399-403. doi: 10.1016/j.nmd.2013.01.010.
  23. Weishaupt JH, Ganser C, Bahr M. Inflammatory demyelinating CNS disorder in a case of X-linked Charcot-Marie-Tooth disease: positive response to natalizumab. J Neurol. 2012;259(9):1967-1969. doi: 10.1007/s00415-012-6467-9.
  24. Ben Youssef-Turki I, Kraoua I, Gargouri A, et al. [A genetically confirmed CMT1A mimicking relapsing CIDP]. Rev Neurol (Paris). 2011;167(12):958-959. doi: 10.1016/j.neurol.2011.05.004.
  25. Marques W, Jr., Funayama CA, Secchin JB, et al. Coexistence of two chronic neuropathies in a young child: Charcot-Marie-Tooth disease type 1A and chronic inflammatory demyelinating polyneuropathy. Muscle Nerve. 2010;42(4):598-600. doi: 10.1002/mus.21753.
  26. Desurkar A, Lin JP, Mills K, et al. Charcot-Marie-Tooth (CMT) disease 1A with superimposed inflammatory polyneuropathy in children. Neuropediatrics. 2009;40(2):85-88. doi: 10.1055/s-0029-1237720.
  27. Houlden H, Laura M, Ginsberg L, et al. The phenotype of Charcot-Marie-Tooth disease type 4C due to SH3TC2 mutations and possible predisposition to an inflammatory neuropathy. Neuromuscul Disord. 2009;19(4):264-269. doi: 10.1016/j.nmd.2009.01.006.
  28. Nakai Y, Okumura A, Takada H, et al. Inflammatory pathological changes in a 2-year-old boy with Charcot-Marie-Tooth disease. Brain Dev. 2001;23(4):258-260. doi: 10.1016/s0387-7604(01)00205-4.
  29. Malandrini A, Villanova M, Dotti MT, Federico A. Acute inflammatory neuropathy in Charcot-Marie-Tooth disease. Neurology. 1999;52(4):859-859. doi: 10.1212/wnl.52.4.859.
  30. Martini R, Toyka KV. Immune-mediated components of hereditary demyelinating neuropathies: lessons from animal models and patients. Lancet Neurol. 2004;3(8):457-465. doi: 10.1016/s1474-4422(04)00822-1.
  31. Ginsberg L, Malik O, Kenton AR, et al. Coexistent hereditary and inflammatory neuropathy. Brain. 2004;127(Pt 1):193-202. doi: 10.1093/brain/awh017.
  32. Noack R, Frede S, Albrecht P, et al. Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential. Hum Mol Genet. 2012;21(1):150-162. doi: 10.1093/hmg/ddr450.
  33. Watila MM, Balarabe SA. Molecular and clinical features of inherited neuropathies due to PMP22 duplication. J Neurol Sci. 2015;355(1-2):18-24. doi: 10.1016/j.jns.2015.05.037.
  34. Chahbouni M, Lopez MDS, Molina-Carballo A, et al. Melatonin Treatment Reduces Oxidative Damage and Normalizes Plasma Pro-Inflammatory Cytokines in Patients Suffering from Charcot-Marie-Tooth Neuropathy: A Pilot Study in Three Children. Molecules. 2017;22(10). doi: 10.3390/molecules22101728.
  35. Sun DQ, Li AW, Li J, et al. Changes of lipid peroxidation in carbon disulfide-treated rat nerve tissues and serum. Chem Biol Interact. 2009;179(2-3):110-117. doi: 10.1016/j.cbi.2008.11.014.
  36. Chahbouni M, Escames G, Venegas C, et al. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J Pineal Res. 2010;48(3):282-289. doi: 10.1111/j.1600-079X.2010.00752.x.
  37. Li W, Zhu H, Zhao X, et al. Dysregulated Inflammatory Signaling upon Charcot-Marie-Tooth Type 1C Mutation of SIMPLE Protein. Mol Cell Biol. 2015;35(14):2464-2478. doi: 10.1128/MCB.00300-15.
  38. Kobsar I, Hasenpusch-Theil K, Wessig C, et al. Evidence for macrophage-mediated myelin disruption in an animal model for Charcot-Marie-Tooth neuropathy type 1A. J Neurosci Res. 2005;81(6):857-864. doi: 10.1002/jnr.20601.
  39. Klein D, Patzko A, Schreiber D, et al. Targeting the colony stimulating factor 1 receptor alleviates two forms of Charcot-Marie-Tooth disease in mice. Brain. 2015;138(Pt 11):3193-3205. doi: 10.1093/brain/awv240.
  40. Moylan JS, Reid MB. Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve. 2007;35(4):411-429. doi: 10.1002/mus.20743.
  41. Da Y, Jia J. Study of antibodies to PMP22, IL-6 and TNF-alpha concentrations in serum in a CMTX1 family. Neurosci Lett. 2007;424(2):73-77. doi: 10.1016/j.neulet.2007.06.051.
  42. Gutmann L, Shy M. Update on Charcot-Marie-Tooth disease. Curr Opin Neurol. 2015;28(5):462-467. doi: 10.1097/WCO.0000000000000237.
  43. Bjelakovic G, Nikolova D, Gluud LL, et al. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Sao Paulo Med J. 2015;133(2):164-165. doi: 10.1590/1516-3180. 20151332T1.
  44. Anisimov VN, Vinogradova IA, Panchenko AV, et al. Light-at-night-induced circadian disruption, cancer and aging. Curr Aging Sci. 2012;5(3):170-177.
  45. Reiter RJ, Mayo JC, Tan DX, et al. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61(3):253-278. doi: 10.1111/jpi.12360.

Views

Abstract - 147

PDF (Russian) - 1

Cited-By


PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2018 Voitenkov V.B., Ekusheva E.V., Skripchenko N.V., Klimkin A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies