Synergy of action of antimicrobial peptides PG-1 and ChBac3.4 with antiseptics against antibiotic-resistant bacteria

Cover Page
  • Authors: Zharkova M.S.1, Umnyakova E.S.1, Afinogenova A.G.2,3, Afinogenov G.E.3, Kolobov A.A.4, Shamova O.V.1
  • Affiliations:
    1. Institute of Experimental Medicine
    2. Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology
    3. Saint Petersburg State University
    4. State Research Institute of Highly Pure Biopreparations
  • Issue: Vol 18, No 4 (2018)
  • Pages: 47-57
  • Section: Articles
  • URL: https://journals.eco-vector.com/MAJ/article/view/11685
  • DOI: https://doi.org/10.17816/MAJ18447-57
  • Cite item

Abstract


We investigated the combined effects of antimicrobial peptides PG-1 and ChBac3.4 with antiseptics (sodium hypochlorite, dioxidine, prontosan, poviargolum, and etidronic acid) to identify combinations that display synergistic antimicrobial activity against antibiotic-resistant bacteria. We used the checker-board titration method to calculate fractional inhibitory concentration indices, and based on the indices the type of combined action was determined. The combined effect on the metabolic activity of bacteria was evaluated using the fluorescent marker resazurin, and the effect on the permeability of bacterial membranes for chromogenic markers was studied spectrophotometrically. The combined hemolytic activity of the combinations was investigated. Sodium hypochlorite was shown to be antagonistic with both antimicrobial peptides. With other antiseptics, combined action was characterized by additivity or synergy. Synergy was most pronounced with the preparation of highly dispersed silver poviargolum. Antiseptics accelerate the development of the antimicrobial effect of antimicrobial peptides but do not significantly affect the dynamics of the membranolytic action of antimicrobial peptides on bacterial cells. Synergy of hemolytic activity is rare. Thus, the combined use of antimicrobial peptides and antiseptics is promising for combating antibiotic-resistant bacteria and can be used to reduce the toxic effects of these compounds.


Full Text

Restricted Access

About the authors

Maria Sergeyevna Zharkova

Institute of Experimental Medicine

Author for correspondence.
Email: zharkova.ms@yandex.ru

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

PhD in Biology, Senior Research Scientist, Department of General Pathology and Pathological Physiology

Ekaterina S. Umnyakova

Institute of Experimental Medicine

Email: umka-biolog@mail.ru

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

PhD in Biology, Senior Research Scientist, Department of General Pathology and Pathological Physiology

Anna G. Afinogenova

Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology; Saint Petersburg State University

Email: pasteur.afinogenova@mail.ru

Russian Federation, 14, Mira street, Saint Petersburg, 197101; 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

PhD in Biology, Leading research associate, Head of the Testing Laboratory Centre; Professor of the Department of Maxillofacial Surgery and Surgical Dentistry

Gennady E. Afinogenov

Saint Petersburg State University

Email: oshamova@yandex.ru

Russian Federation, MD, PhD, Professor, Professor of the Department of Maxillofacial Surgery and Surgical Dentistry

Aleksandr A. Kolobov

State Research Institute of Highly Pure Biopreparations

Email: oshamova@yandex.ru

Russian Federation, 7, Pudozhskaya ul., Saint Petersburg, 197110

PhD in Biology, Head of the Peptide Chemistry Laboratory

Olga V. Shamova

Institute of Experimental Medicine

Email: oshamova@yandex.ru

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376

PhD in Biology, Associate Professor, Head of the Department of General Pathology and Pathological Physiology, Deputy Director for Science

References

  1. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277-283.
  2. Who.int [Internet]. WHO. Global Action Plan on Antimicrobial Resistance. Geneva: World Health Organization, 2015 [cited 22.09.2018]. Available from: http://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/.
  3. Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005;30(7):505-515. https://doi.org/10.1080/02713680590968637.
  4. Guani-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Teran LM. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol. 2010;135(1):1-11. https://doi.org/10.1016/j.clim.2009.12.004.
  5. Mahlapuu M, Hakansson J, Ringstad L, Bjorn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016;6:194. https://doi.org/10.3389/fcimb.2016.00194.
  6. Guilhelmelli F, Vilela N, Albuquerque P, et al. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:353. https://doi.org/10.3389/fmicb.2013.00353.
  7. Haney EF, Mansour SC, Hancock RE. Antimicrobial Peptides: An Introduction. Methods Mol Biol. 2017;1548:3-22. https://doi.org/10.1007/978-1-4939-6737-7_1.
  8. Marr AK, Gooderham WJ, Hancock RE. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol. 2006;6(5):468-472. https://doi.org/10.1016/j.coph.2006.04.006.
  9. Langham AA, Khandelia H, Schuster B, et al. Correlation between simulated physicochemical properties and hemolycity of protegrin-like antimicrobial peptides: predicting experimental toxicity. Peptides. 2008;29(7):1085-1093. https://doi.org/10.1016/j.peptides.2008.03.018.
  10. Echols K, Graves M, LeBlanc KG, et al. Role of antiseptics in the prevention of surgical site infections. Dermatol Surg. 2015;41(6):667-676. https://doi.org/10.1097/DSS.0000000000000375.
  11. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147-179. PMC88911. https://doi.org/10.1128/cmr.12.1.147.
  12. McCullough M, Carlson GW. Dakin’s solution: historical perspective and current practice. Ann Plast Surg. 2014;73(3):254-256. https://doi.org/10.1097/SAP.0b013e3182a634f7.
  13. Frecer V. QSAR analysis of antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from protegrin-1. Bioorg Med Chem. 2006;14(17):6065-6074. https://doi.org/10.1016/j.bmc.2006.05.005.
  14. Shamova O, Orlov D, Stegemann C, et al. ChBac3.4: A Novel Proline-Rich Antimicrobial Peptide from Goat Leukocytes. Int J Pept Res Therap. 2009;15(1):31-42. https://doi.org/10.1007/s10989-009-9170-7.
  15. Krizsan A, Prahl C, Goldbach T, et al. Short Proline-Rich Antimicrobial Peptides Inhibit Either the Bacterial 70S Ribosome or the Assembly of its Large 50S Subunit. Chembiochem. 2015;16(16):2304-2308. https://doi.org/10.1002/cbic.201500375.
  16. Zahn M, Berthold N, Kieslich B, et al. Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK. J Mol Biol. 2013;425(14):2463-2479. https://doi.org/10.1016/j.jmb.2013.03.041.
  17. Лукоянова Т.В., Булгаков В.С., Кравцов Э.Г., и др. Эффективность применения этидроновой кислоты как средства профилактики воспалительных заболеваний полости рта // Российская стоматология. - 2011. - Т. 4. - № 2. - С. 26-28. [Lukoyanova TV, Bulgakov VS, Kravtsov EG, et al. Efficiency of etidronic acid for the prevention of inflammatory processes in the oral cavity. Russian journal of stomatology. 2011;4(2):26-28. (In Russ.)]
  18. Афиногенова А.Г., Ворошилова Т.М., Афиногенов Г.Е., Мадай Д.Ю. Оценка эффективности нового ингибитора металло-бета-лактамазы в условиях модельной системы in vitro // Инфекция и иммунитет. - 2016. - Т. 6. - № 4. - С. 335-344. [Afinogenova AG, Voroshilova TM, Afinogenov GE, Maday DY. The new metall-beta-lactamase’s inhibitor efficacy in a model system in vitro. Infektsiia Immun. 2016;6(4):335-344. (In Russ.)]. https://doi.org/10.15789/2220-7619-2016-4-335-344.
  19. Methods in Molecular Biology. Volume 78. Antibacterial Peptide Protocols. Ed. by WS Shafer. Totowa, NJ: The Humana Press; 1997. 259 p. https://doi.org/10.1385/0896034089.
  20. Orhan G, Bayram A, Zer Y, Balci I. Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J Clin Microbiol. 2005;43(1):140-143. https://doi.org/10.1128/JCM.43.1.140-143.2005.
  21. Fassi Fehri L, Wroblewski H, Blanchard A. Activities of antimicrobial peptides and synergy with enrofloxacin against Mycoplasma pulmonis. Antimicrob Agents Chemother. 2007;51(2):468-474. https://doi.org/10.1128/AAC.01030-06.
  22. Lehrer RI, Barton A, Ganz T. Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. J Immunol Methods. 1988;108(1-2):153-158. https://doi.org/10.1016/0022-1759(88)90414-0.
  23. Артамонов А.Ю., Шамова О.В., Кокряков В.Н., Орлов Д.С. Фото- и флюориметрические методы оценки проницаемости мембран E. coli ML-35P // Вестник Санкт-Петербургского университета. Серия 3. Биология. - 2008. - № 2. - С. 139-142. [Artamonov AY, SHamova OV, Kokryakov VN, Orlov DS. Color emetric and fluorometric microplate based assays for evaluation microbial membranes permeability. Vestnik SPbGU. Ser. 3. 2008;(2):139-142. (In Russ.)]
  24. Mariscal A, Lopez-Gigosos RM, Carnero-Varo M, Fernandez-Crehuet J. Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl Microbiol Biotechnol. 2009;82(4):773-783. https://doi.org/10.1007/s00253-009-1879-x.
  25. Жаркова М.С., Шамова О.В., Орлов Д.С., Голубева О.Ю. Антибактериальное и цитотоксическое действие биоконъюгатов природных антимикробных полипептидов с наночастицами серебра // Российский иммунологический журнал. - 2015. - Т. 9. - № 2-1. - С. 779-781. [Zharkova MS, Shamova OV, Orlov DS, Golubeva OY. Antibacterial and cytotoxic effects of natural antimicrobial polypeptides and silver nanoparticles bioconjugates. Ross Immunol Zhurnal. 2015;9(2-1):779-781. (In Russ.)]
  26. Жаркова М.С. Синергизм антибактериального действия антимикробных пептидов и конвенциальных антибиотиков // Российский иммунологический журнал. - 2014. - Т. 8. - № 3. - С. 792-795. [Zharkova MS. Synergy in antibacterial action of antimicrobial peptides and conventional antibiotics. Ross Immunol Zhurnal. 2014;8(3):792-795. (In Russ.)]
  27. Giacometti A, Cirioni O, Del Prete MS, et al. Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria. Peptides. 2000;21(8):1155-1160. https://doi.org/10.1016/s0196-9781(00)00254-0.
  28. Sanchez-Gomez S, Japelj B, Jerala R, et al. Structural features governing the activity of lactoferricin-derived peptides that act in synergy with antibiotics against Pseudomonas aeruginosa in vitro and in vivo. Antimicrob Agents Chemother. 2011;55(1):218-228. https://doi.org/10.1128/AAC.00904-10.
  29. Feng Q, Huang Y, Chen M, et al. Functional synergy of alpha-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo. Eur J Clin Microbiol Infect Dis. 2015;34(1):197-204. https://doi.org/10.1007/s10096-014-2219-3.

Supplementary files

Supplementary Files Action
1.
Fig. 1. The kinetics of accumulation of fluorescent product recovery of resazurin, reflecting the intensity of metabolic processes in E. coli cells ML-35p, with the combined action of the antimicrobial peptide (AMP) and antiseptics at concentrations of 1 / 4minimum inhibitory concentration (MIC). ChBac3.4 - domestic goat bactenecine (Capra hircus), 3.4 kDa, PG-1 - pig protegrin-1

View (268KB) Indexing metadata
2.
Fig. 2. Kinetics of changes in the permeability of the outer and inner membranes of E. coli ML-35p for chromogenic markers under the combined action of the antimicrobial peptide (AMP) and antiseptics at concentrations of 1/4 of the minimum inhibitory concentration (MIC). ChBac3.4 is a domestic goat bactenecine (Capra hircus) with a mass of 3.4 kDa, PG-1 is pig protegrin-1. OD - optical density

View (248KB) Indexing metadata

Statistics

Views

Abstract - 124

PDF (Russian) - 20

Cited-By


PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2018 Zharkova M.S., Umnyakova E.S., Afinogenova A.G., Afinogenov G.E., Kolobov A.A., Shamova O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies