Reducing of the respiratory effects of dizocilpine by recombinant interleukin-1β in experiment

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: For a deeper understanding of the pathogenesis of COVID-19, it is necessary to study the mechanisms that implement the influence of pro-inflammatory cytokines on the processes of regulation of the external respiratory system. In experiments on anesthetized rats, the effect of the pro-inflammatory cytokine interleukin-1β on the respiratory effects of dizocilpine (MK-801), which has an inhibitory effect on neurotransmitter systems involved in the control of the respiratory system, was studied. It was considered that, first of all, dizocilpine is a highly effective non-competitive NMDA-type glutamate receptor blocker.

AIM: The objectives of the study were to identify the effect of the influence of dizocilpine on the parameters of the breathing pattern and to assess the degree of change in this effect when dizocilpine was administered against the background of an elevated systemic level of interleukin-1β.

MATERIALS AND METHODS: The study was performed on 24 anesthetized tracheostomy spontaneously breathing rats. To register the volume-time parameters of external respiration, a pneumotachographic technique was used. In the process of processing the obtained results, the value of the recorded parameter was determined immediately before the introduction of MK-801 and 1 min after its introduction

RESULTS: At a dosage of 0.1 mg/kg, dizocilpine was found to cause a reversible short-term decrease in respiratory rate, tidal volume, and minute respiratory volume. It has been shown that this effect of dizocilpine does not appear after intravenous administration of interleukin-1β (at a dosage of 2 μg/kg). The results obtained confirm the assumption about the effect of an elevated systemic level of interleukin-1β on the state of neurotransmitter systems involved in the control of respiration.

CONCLUSIONS: Based on the correlation of the obtained results with the literature data, an assumption was made about a change in the state of NMDA-type glutamate receptors under the influence of pro-inflammatory cytokines, which may be one of the mechanisms of cardiorespiratory dysfunctions observed in a systemic inflammatory reaction accompanied by hypercytokinemia.

Full Text

Restricted Access

About the authors

Tatiana S. Tumanova

Pavlov Institute of Physiology of the Rusian Academy of Sciences; Herzen Russian State Pedagogical University

Email: tumanovats@infran.ru
ORCID iD: 0000-0001-6393-6699
SPIN-code: 9054-0304
Scopus Author ID: 57109162900

Junior Research Associate; Аssistant Lecturer

Russian Federation, Saint Petersburg; Saint Petersburg

Vladimir A. Merkurjev

Russian State University of Physical Culture, Sports, Youth and Tourism

Email: vladfiziologi@mail.ru
ORCID iD: 0000-0002-5399-5721
SPIN-code: 8386-8658

Cand. Sci. (Biol.), Senior Lecturer

Russian Federation, Moscow

Galina A. Danilova

Pavlov Institute of Physiology of the Rusian Academy of Sciences

Author for correspondence.
Email: danilovaga@infran.ru
ORCID iD: 0000-0001-8091-0618
SPIN-code: 6784-1326

Cand. Sci. (Biol.), Research Associate

Russian Federation, Saint Petersburg

Viacheslav G. Aleksandrov

Pavlov Institute of Physiology of the Rusian Academy of Sciences

Email: aleksandrovv@infran.ru
ORCID iD: 0000-0002-5079-633X
SPIN-code: 6752-2718
Scopus Author ID: 7202754123
ResearcherId: J-5698-2018

Dr. Sci. (Biol.), Professor, Leading Research Associate, Team Leader

Russian Federation, Saint Petersburg

References

  1. Wong JP, Viswanathan S, Wang M, et al. Current and future developments in the treatment of virus-induced hypercytokinemia. Future Med Chem. 2017;9(2):169–178. doi: 10.4155/fmc-2016-0181
  2. Aleksandrova NP. Pathogenesis of respiratory failure in coronavirus disease (COVID-19). Integrative Physiology. 2020;1(4):285–293. (In Russ.) doi: 10.33910/2687-1270-2020-1-4-285-293
  3. Aleksandrov VG, Aleksandrova NP, Tumanova TS, et al. Participation of NO-ergic mechanisms in realization of respiratory effects of pro-inflammatory cytokine interleukine-1beta. Russian Journal of Physiology. 2015;101(12):1372–1384. (In Russ.)
  4. Aleksandrova NP, Klinnikova AA, Danilova GA. Cyclooxygenase and nitric oxide synthase pathways mediate the respiratory effects of TNF-α in rats. Respir Physiol Neurobiol. 2021;284:103567. doi: 10.1016/j.resp.2020.103567
  5. Churchill L, Taishi P, Wang M. Brain distribution of cytokine m RNA induced by systemic administration of interleukin-1beta or tumor necrosis factor alpha. Brain Res. 2006;1120(1):64–69. doi: 10.1016/j.brainres.2006.08.083
  6. Vardhan A, Kachroo A, Sapru HN. Excitatory amino acid receptors in commissural nucleus of the NTS mediate carotid chemoreceptor responses. Am J Physiol. 1993;264(1Pt 2):R41–R50. doi: 10.1152/ajpregu.1993.264.1.R41
  7. Braga VA, Antunes VR, Machado BH. Autonomic and respiratory responses to microinjection of L-glutamate into the commissural subnucleus of the NTS in the working heart-brainstem preparation of the rat. Brain Res. 2006;1093(1):150–160. doi: 10.1016/j.brainres.2006.03.105
  8. Chiang CH, Hwang JC. The different changes of phrenic nerve activity and frequency elicited by microinjection of L-glutamic acid into ventrolateral nucleus of the tractus solitarius in cats. Chin J Physiol. 1990;33(2):111–120.
  9. Clarke PB, Reuben M. Inhibition by dizocilpine (MK-801) of striatal dopamine release induced by MPTP and MPP+: possible action at the dopamine transporter. Br J Pharmacol. 1995;114(2):315–322. doi: 10.1111/j.1476-5381.1995.tb13229.x
  10. Waters KA, Machaalani R. Role of NMDA receptors in development of respiratory control. Respir Physiol Neurobiol. 2005;149(1–3):123–130. doi: 10.1016/j.resp.2005.03.009
  11. Aleksandrov VG, Bui Thi Kh, Aleksandrova NP. The effect of cerebral glutamate enhanced level on the respiratory system of anesthetized rats. Russian Journal of Physiology. 2012;98(7):845–853. (In Russ.)
  12. Shao XM, Feldman JL. Central cholinergic regulation of respiration: nicotinic receptors. Acta Pharmacol Sin. 2009;30(6):761–770. doi: 10.1038/aps.2009.88
  13. Lalley PM. Opioidergic and dopaminergic modulation of respiration. Respir Physiol Neurobiol. 2008;164(1–2):160–167. doi: 10.1016/j.resp.2008.02.004
  14. Iovino L, Mutolo D, Cinelli E, et al. Breathing stimulation mediated by 5-HT1A and 5-HT3 receptors within the preBötzinger complex of the adult rabbit. Brain Res. 2019;1704:26–39. doi: 10.1016/j.brainres.2018.09.020
  15. Huettner JE, Bean BP. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci USA. 1988;85(4):1307–1311. doi: 10.1073/pnas.85.4.1307
  16. Amador M, Dani JA. MK-801 inhibition of nicotinic acetylcholine receptor channels. Synapse. 1991;7(3):207–215. doi: 10.1002/syn.890070305
  17. Iravani MM, Muscat R, Kruk ZL. MK-801 interaction with the 5-HT transporter: a real-time study in brain slices using fast cyclic voltammetry. Synapse. 1999;32(3):212–224. doi: 10.1002/(SICI)1098-2396(19990601)32:3<212:AID-SYN7>3.0.CO;2-M
  18. Simbirtsev AS. Interleukin-1: from the experiment to the clinic. Medical Immunology (Russia). 2001;3(3):431–438. (In Russ.)
  19. Dascombe MJ, Rothwell NJ, Sagay BO, Stock MJ. Pyrogenic and thermogenic effects of interleukin l beta in the rat. Am J Physiol. 1989;256(1 Pt 1):E7–l1. doi: 10.1152/ajpendo.1989.256.1.E7
  20. Morimoto A, Murakami N, Sakata Y, et al. Functional and structural differences in febrile mechanism between rabbits and rats. J Physiol. 1990;427:227–239. doi: 10.1113/jphysiol.1990.sp018169
  21. McCarthy HD, Dryden S, Williams G. Interleukin-1 P-induced anorexia and pyrexia in rat: relationship to hypothalamic neuropeptide Y. Am J Physiol. 1995;269(5 Pt 1):E852–E857. DOI: 10.1152/ ajpendo.1995.269.5.E852
  22. Pertsov SS, Koplik EV, Kalinichenko LS, Simbirtsev AS. Influence of interleukin-1β on lipid peroxidation in the emotiogenic brain structures of rats under acute stress. Bull Exp Biol Med. 2010;150(1):13–16. (In Russ.) doi: 10.1007/s10517-010-1054-5
  23. Sazonova TA, Varyushina EA, Aleksandrov GV, et al. Perspektivy ispol’zovaniya rekombinantnogo interleikina-1β cheloveka dlya lecheniya ostrykh povrezhdenii slizistoi obolochki zheludochno-kishechnogo trakta u krys. Russian Journal of Allergy. 2012;6:70–71. (In Russ.)
  24. Varyushina EA, Antsiferova MA, Aleksandrov GV, et al. Regulatory role of interleukin-1 in local inflammation and tissue regeneration in a skin wound model. Russian Journal of Allergy. 2012;9(6):62–63. (In Russ.) doi: 10.36691/RJA728
  25. Huettner JE, Bean BP. Neurobiology Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: Selective binding to open channels. Proc Natl Acad Sci USA. 1988;85(4):1307–1311. doi: 10.1073/pnas.85.4.1307
  26. Haji A, Pierrefiche O, Takeda R, et al. Membrane potentials of respiratory neurones during dizocilpine-induced apneusis in adult cats. J Physiol. 1996;495(3):851–861. doi: 10.1113/jphysiol.1996.sp021637
  27. Foutz AS, Champagnat J, Denavit-Saubié M. Involvement of N-methyl-D-aspartate (NMDA) receptors in respiratory rhythmogenesis. Brain Res. 1989;500(1–2):199–208. doi: 10.1016/0006-8993(89)90314-4
  28. Bongianni F, Mutolo D, Carfì M, et al. Respiratory responses to ionotropic glutamate receptor antagonists in the ventral respiratory group of the rabbit. Pflugers Arch. 2002;444(5):602–609. doi: 10.1007/s00424-002-0874-1
  29. Mutolo D, Bongianni F, Nardone F, Pantaleo T. Respiratory responses evoked by blockades of ionotropic glutamate receptors within the Bötzinger complex and the pre-Bötzinger complex of the rabbit. Eur J Neurosci. 2005;21(1):122–134. doi: 10.1111/j.1460-9568.2004.03850.x
  30. Solomon IC. Glutamate neurotransmission is not required for, but may modulate, hypoxic sensitivity of pre-Bötzinger complex in vivo. J Neurophysiol. 2005;93(3):1278–1284. doi: 10.1152/jn.00932.2004
  31. Miyazaki M, Tanaka I, Ezure K. Excitatory and inhibitory synaptic inputs shape the discharge pattern of pump neurons of the nucleus tractus solitarii in the rat. Exp Brain Res. 1999;129(2):191–200. doi: 10.1007/s002210050889
  32. Klinnikova AA, Danilova AG, Aleksandrova NP. The role of NO-synthase pathways in the effects of proinflammatory cytokines on the respiratory system during normoxia and hypoxia. Russian Journal of Physiology. 2021;107(11):1–10. (In Russ.) doi: 10.31857/S0869813921110042

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Weakening of the respiratory effects of dizocilpine (MK-801) when administered against the background of an elevated systemic level of IL-1β (n = 8): change in the frequency of respiratory movements (a), tidal volume (b), minute respiratory volume (c). The abscissa shows the time of action of IL-1β. The arrow indicates the moment of introduction of IL-1β. On the y-axis, the value of the parameter after the introduction of MK-801, expressed as a percentage. The value of the parameter immediately before the introduction of MK-801 was taken as 100%. * Significant changes in the parameter compared with the background, p < 0.05; # significant decrease in the value of the parameter 1 min after the introduction of MK-801

Download (200KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies