Visualisation of kupffer cells in the rat liver with poly- and monoclonal antibodies against microglial-specific protein Iba-1

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: A necessary attribute of any study, which is related to the cell biology of various structural components of the digestive tract, is the usage of modern immunohistochemical methods. One of the most difficult objects are resident liver macrophages, or Kupffer cells. This determines the high significance to develop a reliable approach for Kupffer cells visualization.

AIM: The aim of the study was to develop a protocol for the immunohistochemical research of Kupffer cells in rat liver using two types of primary antibodies against Iba-1, and to analyze the advantages and disadvantages of this approach, taking into account the use of zinc-ethanol-formaldehyde as a fixative.

MATERIALS AND METHODS: The study was carried out on liver samples of adult Wistar rats (n = 5). Goat polyclonal and rabbit monoclonal antibodies against calcium-binding protein Iba-1 were used for the ligh microscopy immunohistochemistry assay of resident liver macrophages.

RESULTS: Using two types of antibodies it was shown by quantitative analysis that rabbit monoclonal antibodies most completely reveal Iba-1-immunopositive structures compared to goat polyclonal antibodies. Fixation with zinc-ethanol-formaldehyde made it possible to reveal Iba-1-immunopositive cells in all studied rat liver samples.

CONCLUSIONS: Iba-1 immunohistochemistry using rabbit monoclonal antibodies was considered as the most optimal immunohistochemical approach. Fixation with zinc-ethanol-formaldehyde preserves the antigenic epitopes and allows the effective use of different antibodies.

Full Text

Restricted Access

About the authors

Inga A. Nikitina

Institute of Experimental Medicine

Email: inga06819@gmail.com

Junior Research Associate, Laboratory of Experimental Histology and Confocal Microsopy, Department of General and Special Morphology

Russian Federation, Saint Petersburg

Valeria A. Razenkova

Institute of Experimental Medicine

Author for correspondence.
Email: valeriya.raz@yandex.ru
ORCID iD: 0000-0002-3997-2232
SPIN-code: 8877-8902
Scopus Author ID: 57219609984
ResearcherId: AAH-1333-2021

PhD student, Junior Research Associate, Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology

Russian Federation, Saint Petersburg

Olga V. Kirik

Institute of Experimental Medicine

Email: olga_kirik@mail.ru
ORCID iD: 0000-0001-6113-3948
SPIN-code: 5725-8742
Scopus Author ID: 27171304100
ResearcherId: A-8710-2012

Cand. Sci. (Biol.), Senior Research Associate of the Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology

Russian Federation, Saint Petersburg

Dmitrii E. Korzhevskii

Institute of Experimental Medicine

Email: DEK2@yandex.ru
ORCID iD: 0000-0002-2456-8165
SPIN-code: 3252-3029
Scopus Author ID: 12770589000
ResearcherId: C-2206-2012

MD, Dr. Sci. (Med.), Professor of the Russian Academy of Sciences, Head of the Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology

Russian Federation, Saint Petersburg

References

  1. Baeck C, Wei X, Bartneck M, et al. Pharmacological inh.ibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice. Hepatology. 2014;59(3):1060–1072. doi: 10.1002/hep.26783
  2. Tsuji Y, Kuramochi M, Golbar HM, et al. Acetaminophen-induced rat hepatotoxicity based on M1/M2-macrophage polarization, in possible relation to damage-associated molecular patterns and autophagy. Int J Mol Sci. 2020;21(23):8998. doi: 10.3390/ijms21238998
  3. Purhonen J, Rajendran J, Mörgelin M, et al. Ketogenic diet attenuates hepatopathy in mouse model of respiratory chain complex III deficiency caused by a Bcs1l mutation. Sci Rep. 2017;7:1–16. doi: 10.1038/s41598-017-01109-4
  4. Mossanen JC, Krenkel O, Ergen C, et al. Chemokine (C-C motif) receptor 2–positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 2016;64(5):1667–1682. doi: 10.1002/hep.28682
  5. Zhao Q, Sheng MF, Wang YY, et al. LncRNA Gm26917 regulates inflammatory response in macrophages by enhancing Annexin A1 ubiquitination in LPS-induced acute liver injury. Front Pharmacol. 2022;13:975250. doi: 10.3389/fphar.2022.975250
  6. Nuovo G. False-positive results in diagnostic immunohistochemistry are related to horseradish peroxidase conjugates in commercially available assays. Ann Diagn Pathol. 2016;25:54–59. doi: 10.1016/j.anndiagpath.2016.09.010
  7. Hammond MEH, Hayes DF, Dowsett M, et al. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med. 2010;134(7):e48–e72. doi: 10.5858/134.7.e48
  8. Bordeaux J, Welsh A, Agarwal S, et al. Antibody validation. BioTechniques. 2010;48(3):197–209. doi: 10.2144/000113382
  9. Korzhevskii DE, Otellin VA, Grigor'ev IP, et al. Immunocytochemical detection of neuronal NO synthase in rat brain cells. Neurosci Behav Physiol. 2008;38(8):835–838. doi: 10.1007/s11055-008-9063-9
  10. Jiang Y. Tang Y, Hoover C, et al. Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice. Cell Death Differ. 2021;28(11):3009–3021. doi: 10.1038/s41418-021-00797-w
  11. Chen B, Li R, Kubota A, et al. Identification of macrophages in normal and injured mouse tissues using reporter lines and antibodies. Sci Rep. 2022;12(1):4542. doi: 10.1038/s41598-022-08278-x
  12. Ait Ahmed Y, Fu Y, Rodrigues RM, et al. Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in IL-6-dependent autocrine and paracrine manners. Cell Mol Immunol. 2021;18(9):2165–2176. doi: 10.1038/s41423-021-00731-7
  13. Miyagawa S, Miwa S, Soeda J, et al. Morphometric analysis of liver macrophages in patients with colorectal liver metastasis. Clin Exp Metastasis. 2002;19(2):119–125. doi: 10.1023/a:1014571013978
  14. Nishikawa K, Iwaya K, Kinoshita M, et al. Resveratrol increases CD68+ Kupffer cells colocalized with adipose differentiation-related protein and ameliorates high-fat-diet-induced fatty liver in mice. Mol Nutr Food Res. 2015;59(6):1155–1170. doi: 10.1002/mnfr.201400564
  15. Ananiev J, Penkova M, Tchernev G, et al. Macrophages and dendritic cells in the development of liver injury leading to liver failure. J Biol Regul Homeost Agents. 2014;28(4):789–794.
  16. Guillot A, Buch C, Jourdan T. Kupffer Cell and monocyte-derived macrophage identification by immunofluorescence on formalin-fixed, paraffin-embedded (FFPE) mouse liver sections. Methods Mol Biol. 2020;2164:45–53. doi: 10.1007/978-1-0716-0704-6_6
  17. Korzhevskii DE, Kirik OV, Sukhorukova EG, Syrszova MA. Microglia of the human substantia nigra. Med Acad J. 2014;14(4):68–72. (In Russ.)
  18. Hopperton KE, Mohammad D, Trépanier MO, et al. Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry. 2018;23(2):177–198. doi: 10.1038/mp.2017.246
  19. Korzhevskii DE, Kirik OV, Alekseyeva OS, et al. Intranuclear accumulation of Iba-1 protein in microgliocytes in the human brain. Neurosci Behav Physiol. 2017. Vol. 47, No. 4. P. 435–437. (In Russ.)
  20. Saper CB. A guide to the perplexed on the specificity of antibodies. J Histochem Cytochem. 2009;57(1):1–5. doi: 10.1369/jhc.2008.952770
  21. Sasaki Y, Ohsawa K, Kanazawa H, et al. Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochem Biophys Res Commun. 2001;286(2):292–297. doi: 10.1006/bbrc.2001.5388
  22. Nguyen TTH, Lee JS, Shim H. Construction of rabbit immune antibody libraries. Methods Mol Biol. 2018;1701:133–146. doi: 10.1007/978-1-4939-7447-4_7
  23. Rashidian J, Lloyd J. Single B Cell cloning and production of rabbit monoclonal antibodies. Methods Mol Biol. 2020;2070:423–441. doi: 10.1007/978-1-4939-9853-1_23
  24. Grigorev IP, Korzhevskii DE. Current technologies for fixation of biological material for immunohistochemical analysis (review). Mod Technol Med. 2018;10(2):156. doi: 10.17691/stm2018.10.2.19
  25. Patent RU 2719163C1/ 17.04.2020. Korzhevskij DE, Kirik OV, Alekseeva OS. Method of antigen retrieval during immunocytochemical reactions. (In Russ.)
  26. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019
  27. Pervin M, Hasan I, Kobir MA, et al. Immunophenotypic analysis of the distribution of hepatic macrophages, lymphocytes and hepatic stellate cells in the adult rat liver. Anat Histol Embryol. 2021;50(4):736–745. doi: 10.1111/ahe.12718
  28. Lefkowitch JH, Haythe JH, Regent N. Kupffer Cell aggregation and perivenular distribution in steatohepatitis. Mod Pathol. 2002;15(7):699–704. doi: 10.1097/01.MP.0000019579.30842.96
  29. Lee WB, Erm SK, Kim KY, Becker RP. Emperipolesis of erythroblasts within Kupffer cells during hepatic hemopoiesis in human fetus. Anat Rec. 1999;256(2):158–164. doi: 10.1002/(SICI)1097-0185(19991001)256:2<158::AID-AR6>3.0.CO;2-0
  30. Urushihara N, Iwagaki H, Yagi T, et al. Elevation of serum interleukin-18 levels and activation of Kupffer cells in biliary atresia. J Pediatr Surg. 2000;35(3):446–449. doi: 10.1016/s0022-3468(00)90211-2
  31. Brown KE, Brunt EM, Heinecke JW. Immunohistochemical detection of myeloperoxidase and its oxidation products in Kupffer cells of human liver. Am J Pathol. 2001;159(6):2081–2088. doi: 10.1016/S0002-9440(10)63059-3
  32. Domínguez-Soto A, Aragoneses-Fenoll L, Gómez-Aguado F, et al. The pathogen receptor liver and lymph node sinusoidal endotelial cell C-type lectin is expressed in human Kupffer cells and regulated by PU.1. Hepatology. 2009;49(1):287–296. doi: 10.1002/hep.22678
  33. Abdel Hafez SMN, Rifaai RA, Bayoumi AMA. Impact of renal ischemia/reperfusion injury on the rat Kupffer cell as a remote cell: A biochemical, histological, immunohistochemical, and electron microscopic study. Acta Histochem. 2019;121(5):575–583. doi: 10.1016/j.acthis.2019.04.008
  34. Haralanova-Ilieva B, Ramadori G, Armbrust T. Expression of osteoactivin in rat and human liver and isolated rat liver cells. J Hepatol. 2005;42(4):565–572. doi: 10.1016/j.jhep.2004.12.021
  35. Monnier J, Piquet-Pellorce C, Feige JJ, et al. Prokineticin 2/Bv8 is expressed in Kupffer cells in liver and is down regulated in human hepatocellular carcinoma. World J Gastroenterol. 2008;14(8):1182–1191. doi: 10.3748/wjg.14.1182
  36. Dong W, Lu A, Zhao J, et al. An efficient and simple co-culture method for isolating primary human hepatic cells: Potential application for tumor microenvironment research. Oncol. Rep. 2016;36(4):2126–2134. doi: 10.3892/or.2016.4979

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Iba-1-immunopositive cells in rat liver: a, c — immunohistochemical reaction with polyclonal goat antibodies; b, d — reaction with monoclonal rabbit antibodies; a, b — with dyeing of hepatocyte nuclei with alum hematoxylin, microscope magnification ×40; c, d — microscope magnification ×10. The asterisk indicates the central vein

Download (530KB)
3. Fig. 2. The result of digital transformation of images showing the clustering of Iba-1-immunopositive cells in rat liver preparations. DBSCAN algorithm, parameter value ε = 50, minDensity = 5 objects were used: a — Iba-1-immunohistochemistry with polyclonal goat antibodies; b — Iba-1-immunohistochemistry with monoclonal rabbit antibodies

Download (439KB)
4. Fig. 3. Area occupied by Iba-1-positive structures: a — рaired difference comparison of the total staining area of Iba-1-immunopositive cells using polyclonal goat and monoclonal rabbit antibodies; *p < 0.05; b — result of statistical comparison of staining area of Iba-1-immunopositive cells for all pairs of cases (n = 5; N1–N5) for polyclonal goat and monoclonal rabbit antibodies. On the Y-axis on the left of each graph, a scale-invariant projection of the Y-axis scale on the right (µm2) on the interval from [0, 1] is located; *p < 0.05, **p < 0.01

Download (168KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies