1-desamino-8-D-arginin-vasopressin, DDAVP, increases the content of brain-derived neurotrophic factor (BDNF) in blood plasma of rats in model of post-traumatic stress disorder

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. We aimed to analyze the effect of an agonist of vasopressin type 2 receptors, 1-desamino-8-D-arginine-vasopressin, DDAVP, on the content of the brain neurotrophic factor, BDNF, in the hippocampus and blood plasma of rats exposed to vital stress.

Material and methods. The study carried out on female Wistar rats divided into 4 groups: first group included control animals, 2 — those who received DDAVP intranasally in small doses (once 2 ∙ 10–9 g, course 20 ∙ 10–9 g), 3 — those who exposed to the stress of a threat to life caused by the experience of the death of a partner from the actions of a tiger python, 4 — those who exposed to stress and received DDAVP. BDNF concentration in samples was measured by immunohistochemical method.

Results. An increase in the content of BDNF in blood plasma in rats exposed to acute psychogenic stress and received DDAVP therapy was revealed on the tenth day after stress. There was no effect of stress, DDAVP, or their combined effect on the BDNF content in the homogenate of hippocampal tissues.

Conclusion. The results of this pilot study indicate that DDAVP has a modulatory effect on BDNF metabolism in rats exposed to vital stress. It is assumed that an increase in the level of neurotrophin in the blood of rats reflects the activation of compensatory processes.

Full Text

Restricted Access

About the authors

Svetlana G. Belokoskova

Institute of Experimental Medicine

Author for correspondence.
Email: Belokoskova.sg@iemspb.ru
ORCID iD: 0000-0002-0552-4810
SPIN-code: 4317-6620
Scopus Author ID: 6507716078

PhD, Senior Researcher, Pavlov Department of Physiology

Russian Federation, Saint Petersburg

Darya V. Krytskaya

Institute of Experimental Medicine

Email: darya_uladzimirawna@mail.ru
ORCID iD: 0000-0002-6188-0318
SPIN-code: 7118-7891

PhD Student of the Pavlov Department of Physiology

Russian Federation, Saint Petersburg

Gleb V. Beznin

Institute of Experimental Medicine

Email: beznin.gv@iemspb.ru
ORCID iD: 0000-0001-5730-4265
SPIN-code: 7796-1107

PhD, Research Scientist, Pavlov Department of Physiology

Russian Federation, Saint Petersburg

Marina N. Karpenko

Institute of Experimental Medicine

Email: mnkarpenko@mail.ru
ORCID iD: 0000-0002-1082-0059
SPIN-code: 6098-2715

PhD, Head of the Laboratory of Neurochemistry

Russian Federation, Saint Petersburg

Sergey G. Tsikunov

Institute of Experimental Medicine

Email: secikunov@yandex.ru
ORCID iD: 0000-0002-7097-1940
SPIN-code: 7771-1940
Scopus Author ID: 6506948997
ResearcherId: E-6273-2014

Doctor of Medical Sciences, Professor, Head of the Laboratory of Psychophysiology of emotions

Russian Federation, Saint Petersburg

References

  1. Безнин Г.В., Белокоскова С.Г., Цикунов С.Г. Влияние 1-дезамино-8-D-аргинин-вазопрессина на развитие поведенческих и структурно-функциональных нарушений, вызванных витальным стрессом, у крыс // Медицинский академический журнал. – 2016. – Т. 16. – № 4. – C. 14–15. [Beznin GV, Belokoskova SG, Cikunov SG. Vliyanie 1-dezamino-8-D-arginin-vazopressina na razvitie povedencheskih i strukturno-funkcional’nyh narushenij, vyzvannyh vital’nym stressom, u krys. Medical Academic Journal. 2016;16(4):14–15. (In Russ.)]
  2. Csikota P, Fodor A, Balázsfi D, et al. Vasopressinergic control of stress-related behavior: studies in Brattleboro rats. Stress. 2016;19(4):349–361. https://doi.org/10.1080/10253890.2016.1183117.
  3. Koshimizu TA, Nakamura K, Egashira N, et al. Vasopressin V1a and V1b receptors: From molecules to physiological systems. Physiol Rev. 2012;92(4):1813–1864. https://doi.org/10.1152/physrev.00035.2011.
  4. Zelena D, Mergl Z, Makara GB. The role of vasopressin in diabetes mellitus-induced hypothalamo-pituitary-adrenal axis activation: Studies in Brattleboro rats. Brain Res Bull. 2006;69(1):48–56. https://doi.org/10.1016/j.brainresbull. 2005.10.009.
  5. Broadbear JH, Kabel D, Tracy L, Mak P. Oxytocinergic regulation of endogenous as well as drug-induced mood. Pharmacol Biochem Behav. 2014;119:61–71. https://doi.org/10.1016/j.pbb.2013.07.002.
  6. Цикунов С.Г. Нейробиология витального стресса. Новые модели психической травмы и посттравматического стрессового расстройства // Обзоры клинической фармакологии и лекарственной терапии. – 2015. – Т. 13, прил. – C. 187–188. [Tsikunov SG. Nejrobiologiya vital’nogo stressa. Novye modeli psihicheskoj travmy i posttravmaticheskogo stressovogo rasstrojstva. Reviews on clinical pharmacology and drug therapy. 2015;13(Suppl.):187–188. (In Russ.)]
  7. Белокоскова С.Г., Степанов И.И., Цикунов С.Г. Агонист V2-рецепторов вазопрессина редуцирует депрессивные расстройства у постинсультных больных // Вестник РАМН. – 2012. – № 4. – С. 40–44. [Belokoskova SG, Stepanov II, Cikunov SG. Agonist of V2 vasopressin receptor reduces depressive disorders in post-stroke patients. Annals of the Russian academy of medical sciences. 2012;(4):40–44. (In Russ.)]
  8. Белокоскова С.Г., Цикунов С.Г. Вазопрессин в механизмах реализации реакций на стресс и модуляции эмоций // Обзоры по клинической фармакологии и лекарственной терапии. – 2018. – Т. 16. – № 3. – С. 5–12. [Belokoskova SG, Cikunov SG. Vazopressin v mekhanizmah realizacii reakcij na stress i modulyacii emocij. Reviews on clinical pharmacology and drug therapy. 2018;16(3):5–12. (In Russ.)]. https://doi.org/10.17816/RCF1635-12.
  9. Castrén E, Rantamäki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev Neurobiol. 2010;70(5):289–97. https://doi.org/10.1002/dneu.20758.
  10. Chan JP, Unger TJ, Byrnes J, Rios M. Examination of behavioral deficits triggered by targeting Bdnf in fetal or postnatal brains of mice. Neuroscience. 2006;142(1):49–58. https://doi.org/10.1016/j.neuroscience.2006.06.002.
  11. Masana Y, Wanaka A, Kato H, et al. Localization of trkB mRNA in postnatal brain development. J Neurosci Res. 1993;35(5):468–479. https://doi.org/10.1002/jnr.490350503.
  12. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64(2):238–258. https://doi.org/10.1124/pr.111.005108.
  13. Fujimura H, Altar CA, Chen R, et al. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost. 2002;87(4):728–734.
  14. Karege F, Bondolfi G, Gervasoni N, et al. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry. 2005;57(9):1068–1072. https://doi.org/10.1016/j.biopsych.2005.01.008.
  15. Chen B, Dowlatshahi D, MacQueen GM, et al. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001;50(4):260–265. https://doi.org/10.1016/s0006-3223 (01)01083-6.
  16. Angelucci F, Aloe L, Vasquez PJ, Mathe AA. Mapping the differences in the brain of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in animal model of depression. Neuro Report. 2000;11(6):1369–1373. https://doi.org/10.1097/00001756-200004270-00044.
  17. Karege F, Perret G, Bondolfi G, et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Research. 2002;109(2):143–148. https://doi.org/10.1016/s0165-1781(02)00005-7.
  18. Klein AB, Williamson R, Santini MA, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14(3):347–353. https://doi.org/10.1017/S1461145710000738.
  19. Sartorius A, Hellweg R, Litzke J, et al. Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry. 2009;42(6):270–276. https://doi.org/ 10.1055/s-0029-1224162.
  20. Pan W, Banks WA, Fasold MB, et al. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37(12):1553–1561. https://doi.org/10.1016/s0028-3908(98)00141-5.
  21. Lakshminarasimhan H, Chattarji S. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS One. 2012;7(1):e30481. https://doi.org/10.1371/journal.pone.0030481.
  22. Marmigère F, Givalois L, Rage F, et al. Rapid induction of BDNF expression in the hippocampus during immobilization stress challenge in adult rats. Hippocampus. 2003;13(5):646–655. https://doi.org/10.1002/hipo.10109.
  23. Shi SS, Shao SH, Yuan BP, et al. Acute stress and chronic stress change brain-derived neurotrophic factor (BDNF) and tyrosine kinase-coupled receptor (TrkB) expression in both young and aged rat hippocampus. Yonsei Med J. 2010;51(5):661–671. https://doi.org/10.3349/ymj. 2010.51.5.661.
  24. Lee T, Saruta J, Sasaguri K, et al. Allowing animals to bite reverses the effects of immobilization stress on hippocampal neurotrophin expression. Brain Res. 2008;1195:43–49. https://doi.org/10.1016/j.brainres.2007.12.013.
  25. Yau SY, Lau BW, Zhang ED, et al. Effects of voluntary running on plasma levels of neurotrophins, hippocampal cell proliferation, learning, and memory in stressed rats. Neuroscience. 2012;222:289–301. https://doi.org/10.1016/ j.neuroscience.2012.07.019.
  26. Kubo KY, Kotachi M, Suzuki A, et al. Chewing during prenatal stress prevents prenatal stress-induced suppression of neurogenesis, anxiety-like behavior and learning deficits in mouse offspring. Int J Med Sci. 2018;15(9):849–858. https://doi.org/10.7150/ijms.25281.
  27. Roceri M, Hendriks W, Ricagni G, et al. Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry. 2002;7(6):609–616. https://doi.org/10.1038/sj.mp. 4001036.
  28. Schmitt K, Holsboer-Trachsler E, Eckert A. BDNF in sleep, insomnia, and sleep deprivation. Ann Med. 2016;48(1–2): 42–51. https://doi.org/10.3109/07853890.2015.1131327.
  29. Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;(10):1089–1093. https://doi.org/10.1038/nn1971.
  30. Shimizu E, Hashimoto K, Okamura N, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54(1):70–75. https://doi.org/10.1016/s0006-3223(03)00181-1.
  31. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15(11):7539–7547. https://doi.org/10.1523/JNEUROSCI.15-11-07539.1995.
  32. Smith MA, Makino S, Kvetnanský R, Post RM. Effects of stress on neurotrophic factor expression in the rat brain. Ann N Y Acad Sci. 1995;771:234–239. https://doi.org/ 10.1111/j.1749-6632.1995.tb44684.x.
  33. Aydemir O, Deveci A, Taneli F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(2):261–265. https://doi.org/ 10.1016/j.pnpbp.2004.11.009.
  34. Zhou AW, Li WX, Guo J, et al. Facilitation of AVP(4-8) on gene expression of BDNF and NGF in rat brain. Peptides. 1997;18(8):1179–1187. https://doi.org/10.1016/s0196- 9781(97)00184-8.
  35. Ang VT, Jenkins JS. Blood-cerebrospinal fluid barrier to arginine-vasopressin, desmopressin and desglycinamide arginine-vasopressin in the dog. J Endocrinol. 1982;93(3): 319–325. https://doi.org/10.1677/joe.0.0930319.
  36. Born J, Lange T, Kern W, et al. Sniffing neuropeptides: A transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514–516. https://doi.org/10.1038/nn849.
  37. Ermisch A, Barth T, Rühle HJ, et al. On the blood-brain barrier to peptides: Accumulation of labelled vasopressin, DesGlyNH2-vasopressin and oxytocin by brain regions. Endocrinol Exp. 1985;19(1):29–37.
  38. Johnson NJ, Hanson LR, Frey WH. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm. 2010;7(3):884–893. https://doi.org/10.1021/mp100029t.
  39. Thorne RG, Pronk GJ, Padmanabhan V, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–496. https://doi.org/10.1016/j.neuroscience.2004.05.029.
  40. Jiang Y, Li Y, Liu X. Intranasal delivery: Circumventing the iron curtain to treat neurological disorders. Expert Opin Drug Deliv. 2015;12(11):1717–1725. https://doi.org/10.1517/17425247.2015.1065812.
  41. Scranton RA, Fletcher L, Sprague S, et al. The rostral migratory stream plays a key role in intranasal delivery of drugs into the CNS. PLoS One. 2011;6(4):e18711. https://doi.org/10.1371/journal.pone.0018711.
  42. Huber D, Cramer EM, Kaufmann JE, et al. Tissue-type plasminogen activator (t-PA) is stored in Weibel-Palade bodies in human endothelial cells both in vitro and in vivo. Blood. 2002;99(10):3637–3645. https://doi.org/10.1182/blood.v99.10.3637.
  43. Kaufmann JE, Vischer UM. Cellular mechanisms of the hemostatic effects of desmopressin (DDAVP). J Thromb Haemost. 2003;1(4):682–689. https://doi.org/10.1046/j.1538-7836.2003.00190.x.
  44. Wall U, Jern S, Tengborn L, et al. Evidence of a local mechanism for desmopressin-induced tissue-type plasminogen activator release in human forearm. Blood. 1998;91(2):529–537.
  45. Medcalf RL. Fibrinolysis: from blood to the brain. J Thromb Haemost. 2017;15(11):2089–2098. https://doi.org/10.1111/jth.13849.
  46. Rodier M, Quirié A, Prigent-Tessier A, et al. Relevance of post-stroke circulating BDNF levels as a prognostic biomarker of stroke outcome. Impact of rt-PA treatment. PLoS One. 2015;10(10):e0140668. https://doi.org/10.1371/journal.pone.0140668.
  47. Soreq H, Miskin R. Plasminogen activator in the rodent brain. Brain Res. 1981;216(2):361–374. https://doi.org/10.1016/0006-8993(81)90138-4.
  48. Chao MV, Rithwick R, Lee FS. Neurotrophin signalling in health and disease. Clin Sci (Lond). 2006;110(2):167–173. https://doi.org/10.1042/CS20050163.
  49. Idell RD, Florova G, Komissarov AA, et al. The fibrinolytic system: A new target for treatment of depression with psychedelics. Med Hypotheses. 2017;100:46–53. https://doi.org/10.1016/j.mehy.2017.01.013.
  50. Schäbitz W-R, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38(7):2165–2172. https://doi.org/10.1161/STROKEAHA.106.477331.
  51. Björkholm C, Monteggia LM. BDNF — a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72–79. https://doi.org/10.1016/j.neuropharm.2015.10.034.
  52. Alcalá-Barraza SR, Lee MS, Hanson LR, et al. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug Target. 2010;18(3):179–190. https://doi.org/10.3109/10611860903318134.
  53. Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Rev. 1998;27(1):1–39. https://doi.org/10.1016/s0165-0173(98)00004-6.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effects of stress and the introduction of DDAVP on the BDNF content in homogenate tissue of the hippocampus of female rats (M ± SEM, pg/mg protein). Animal group: 1 — intact, 2 — receiving DDAVP, 3 — moved vital stress, 4 — moved vital stress and receiving DDAVP

Download (36KB)
3. Fig. 2. Effects of stress and introduction of DDAVP on the BDNF content in plasma of female rats (M ± SEM, pg/ml). Animal group: 1 — intact, 2 — receiving DDAVP, 3 — moved vital stress, 4 — moved vital stress and receiving DDAVP. * the significance of differences between the content of neurotrophin in rats of fourth and first group; # between rats of fourth and two group; & between rats of fourth and third group (p < 0.05, two way ANOVA, post hoc Tukey)

Download (32KB)
4. Fig. 3. Influence of the factor of administration of DDAVP on the content of BDNF in blood plasma in rats. Data are presented as mean, 0.95% confidence interval, F (1,15) = 12.9, р = 0.004 (two-way ANOVA, factor introduction of DDAVP)

Download (40KB)

Copyright (c) 2021 Belokoskova S.G., Krytskaya D.V., Beznin G.V., Karpenko M.N., Tsikunov S.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies