Pathogenesis of neuropsychic complications of new coronavirus infection (COVID-19)



Cite item

Full Text

Abstract

Infection caused by the SARS-Cov-2 coronavirus is characterized by neurological and mental complications in a significant number of patients, which are based on disruption of the permeability of the blood-brain barrier, penetration of pro-inflammatory cytokines into the brain, neuroinflammation and coagulopathy. Studies of the brains of patients who died during an acute period of the disease showed a presence of foci of perivascular inflammation containing macrophages and, in a small number, CD8+ T cells. Microglial cells, mast cells, macrophages, and endothelial cells are involved in the development of neuroinflammation. Microglial nodules were observed in brain tissue samples, indicating neurophagia and neuronal loss. Some SARS-Cov-2 proteins, in particular the S protein, have pathogenic properties towards neurons. Biochemical markers in the cerebrospinal fluid of COVID-19 patients - NfL (neurofilament light chain) and GFAp (glial fibrillary acidic protein) indicate axonal destruction and astrocyte damage. Many patients with COVID-19, develop autoantibodies to self-antigens, including some CNS receptors, and encephalitis due to immune dysfunction and molecular mimicry. In patients with Alzheimer's disease and Parkinson's disease, coronavirus infection increases the symptoms of these diseases. The purpose of the review is summarizing the literary data for the analysis of immunopathogenesis of neuropsychic complications of acute coronavirus infection (COVID-19) and post-COVID syndrome.

Full Text

Restricted Access

About the authors

Nikolay Anatolyevich Klimov

Institute of Experimental medicine

Email: nklimov@mail.ru
ORCID iD: 0000-0002-5243-8085

Senior Researcher

Russian Federation

Olga Valeryevna Shamova

Institute of Experimental Medicine

Author for correspondence.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801

Associate Professor, Dr. Sci. (Biol.), Corresponding Member of the Russian Academy of Sciences, Head of the Department of General Pathology and Pathological Physiology

Russian Federation

References

  1. Bordallo B., Bellas M., Cortez A.F., et al. Severe COVID-19: what have we learned with the immunopathogenesis? Adv. Rheumatol. 2020; 60(1):50. doi: 10.1186/s42358-020-00151-7.
  2. Batiha G.E., Al-Kuraishy H.M., Al-Gareeb A.I., et al. Pathophysiology of Post-COVID syndromes: a new perspective. Virol. J. 2022;19(1): 158. doi: 10.1186/s12985-022-01891-2.
  3. Evans J.P., Liu S.-L. Role of host factors in SARS-CoV-2 entry. J. Biol. Chem. 2021:297(1): 100847. doi: 10.1016/j.jbc.2021.100847.
  4. Gusev E., Sarapultsev A., Solomatina L., et al. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int. J. Mol. Sci. 2022; 23(3):1716. doi: 10.3390/ijms23031716
  5. Cantuti-Castelvetri L., Ojha R., Pedro L.D., et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020; 370(6518):856-860. doi: 10.1126/science.abd2985.
  6. Daly J.L., Simonetti B., Klein K., et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020; 370 (6518):861-865. doi: 10.1126/science.abd3072.
  7. Zhao J, Yuan Q, Wang H, et al. Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019. Clin. Infect. Dis. 2020; 71 (16):2027-2034. doi: 10.1093/cid/ciaa344.
  8. Wajnberg A., Amanat F., Firpo A., et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science. 2020; 370(6521):1227-1230. doi: 10.1126/science.abd7728.
  9. Sun J., Xiao J., Sun R., et al. Prolonged Persistence of SARS-CoV-2 RNA in Body Fluids. Emerg. Infect. Dis. 2020; 26(8):1834-1838. doi: 10.3201/eid2608.201097.
  10. Stein S.R., Ramelli S.C., Grazioli A., et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022; 612(7941):758-763. doi: 10.1038/s41586-022-05542-y.
  11. Batiha G.E., Al-Kuraishy H.M., Al-Gareeb A.I., et al. Pathophysiology of Post-COVID syndromes: a new perspective. Virol. J. 2022; 19(1):158. doi: 10.1186/s12985-022-01891-2.
  12. Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N. Engl. J. Med. 2017; 377(7):562–572. doi: 10.1056/NEJMra1608077.
  13. Burnham E.L., Janssen W.J., Riches D.W., et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significanc. Eur.Respir. J. 2014; 43(1): 276–285. doi: 10.1183/09031936.00196412.
  14. Bordallo B., Bellas M., Cortez A.F., et al. Severe COVID-19: what have we learned with the immunopathogenesis? Adv. Rheumatol. 2020; 60(1):50. doi: 10.1186/s42358-020-00151-7.
  15. Liu J, Li S, Liu J, Liang B, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020; 55:102763. doi: 10.1016/j.ebiom.2020.102763.
  16. Blanco-Melo D., Nilsson-Payant B.E., Liu W-C., et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-1045.e9. doi: 10.1016/j.cell.2020.04.026.
  17. Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J. Allergy Clin. Immunol. 2020;146(1):119-127.e4. doi: 10.1016/j.jaci.2020.04.027.
  18. Yang L., Liu S., Liu J., et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther. 2020; 5(1):128. doi: 10.1038/s41392-020-00243-2.
  19. Soriano J.B., Murthy S., Marshall J.C., et al. WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022; 22(4):e102-e107. doi: 10.1016/S1473-3099(21)00703-9.
  20. Yong S.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect. Dis. (Lond). 2021; 53(10):737-754. doi: 10.1080/23744235.2021.1924397.
  21. Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21(3):133-146. doi: 10.1038/s41579-022-00846-2.
  22. Peluso M.J., Lu S., Tang A.F., et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. J. Infect. Dis. 2021; 224(11):1839–1848. doi: 10.1093/infdis/jiab490.
  23. Swank Z., Senussi Y., Manickas-Hill Z., et al. Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is Associated With Post-acute Coronavirus Disease 2019 Sequelae. Clin. Infect. Dis. 2023; 76(3): e487-e490. doi: 10.1093/cid/ciac722.
  24. Stein S.R., Ramelli S.C., Grazioli A., et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022; 612(7941):758-763. doi: 10.1038/s41586-022-05542-y.
  25. Taquet M., Geddes J.R., Husain M., et al. 6‐month neurological and psychiatric outcomes in 236379 survivors of COVID‐19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021; 8(5):416‐427. doi: 10.1016/S2215-0366(21)00084-5.
  26. Davis H.E., McCorkell L., Vogel J.M., et al. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21(1):133-146. doi: 10.1038/s41579-022-00846-2.
  27. Taquet M., Sillett R., Zhu L., et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022; 9(10)815-827. doi: 10.1016/S2215-0366(22)00260-7.
  28. Lee M.H., Perl D.P., Steiner J., et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain. 2022; 145(7):2555–2568. doi: 10.1093/brain/awac151.
  29. Matschke J., Lütgehetmann M., Hagel C., et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020; 19(11):919-929. doi: 10.1016/S1474-4422(20)30308-2.
  30. Solomon I.H., Normandin E., Bhattacharyya S., et al. Neuropathological Features of Covid-19. N. Engl. J. Med. 2020; 383(10):989-992. doi: 10.1056/NEJMc2019373.
  31. Barrantes F.J. Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses. ACS Chem. Neurosci. 2020; 11(18):2793-2803. doi: 10.1021/acschemneuro.0c00434.
  32. Welcome M.O., Mastorakis N.E. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology. 202; 29(4): 939-963. doi: 10.1007/s10787-021-00806-x.
  33. Meinhardt J, Radke J, Dittmayer C et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021; 24(2):168–175. doi: 10.1038/s41593-020-00758-5.
  34. Burks S.M., Rosas-Hernandez H., Alejandro Ramirez-Lee M., et al. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav. Immun. 2021; 95(1):7-14. doi: 10.1016/j.bbi.2020.12.031.
  35. Granholm AC. Long-Term Effects of SARS-CoV-2 in the Brain: Clinical Consequences and Molecular Mechanisms. J. Clin. Med. 2023; 12(9):3190. doi: 10.3390/jcm12093190.
  36. Kaplan L., Chow B.W., Gu C. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 2020; 21(8):416–432. doi: 10.1038/s41583-020-0322-2.
  37. Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci. Ther. 2021; 27(1):36-47. doi: 10.1111/cns.13569.
  38. Wang F., Kream R.M., Stefano G.B. Long-Term Respiratory and Neurological Sequelae of COVID-19. Med. Sci. Monit. 2020; 26: e928996. doi: 10.12659/MSM.928996.
  39. Rauti R., Shahoha M., Leichtmann-Bardoogo Y. et al. Effect of SARS-CoV-2 proteins on vascular permeability. Elife. 2021; 10:e69314. doi: 10.7554/eLife.69314.
  40. Pezzini A, Padovani A: Lifting the mask on neurological manifestations of COVID-19. Nat. Rev. Neurol. 2020; 24(1):1–9. doi: 10.7554/eLife.69314.
  41. Zhang L, Zhou L, Bao L et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct. Target Ther. 2021; 6(1):337-373. doi: 10.1038/s41392-021-00719-9.
  42. Song E., Zhang C., Israelow B., et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 2021; 218(3): e20202135. doi: 10.1084/jem.20202135.
  43. Spudich S., Nath A. Nervous system consequences of COVID-19. Science. 2022; 375(6578):267–269. doi: 10.1126/science.abm2052.
  44. Brann D.H., Tsukahara T., Weinreb C., et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020; 6(31):eabc5801. doi: 10.1126/sciadv.abc5801.
  45. Soung A.L., Vanderheiden A., Nordvig A.S., et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain. 2022; 145(12):4193-4201. doi: 10.1093/brain/awac270.
  46. Poloni T.E., Moretti M., Medici V., et al. COVID-19 Pathology in the Lung, Kidney, Heart and Brain: The Different Roles of T-Cells, Macrophages, and Microthrombosis. Cells. 2022; 11(19):3124. doi: 10.3390/cells11193124.
  47. Frank S. Catch me if you can: SARS-CoV-2 detection in brains of deceased patients with COVID-19. Lancet Neurol. 2020; 19(11):883-884. doi: 10.1016/S1474-4422(20)30371-9.
  48. Gafson A.R., Barthe´lemy N.R., Bomont P., et al. Neurofilaments: neurobiological foundations for biomarker applications. Brain. 2020; 143(7):1975–1998. doi: 10.1093/brain/awaa098.
  49. Zingaropoli M.A., Pasculli P., Barbato C., et al. Biomarkers of Neurological Damage: From Acute Stage to Post-Acute Sequelae of COVID-19. Cells. 2023; 12(18): 2270. doi: 10.3390/cells12182270.
  50. Kanberg N, Simrén J, Edén A, et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine. 2021; 70:103512. doi: 10.1016/j.ebiom.2021.103512.
  51. Karnik M., Beeraka N.M., Uthaiah C.A., et al. A Review on SARS CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol. Neurobiol. 2021; 58(9):4535–4563. doi: 10.1007/s12035-021-02399-6.
  52. Chaumont H., Kaczorowski F., San-Galli A., et al. Cerebrospinal fluid biomarkers in SARS-CoV-2 patients with acute neurological syndromes. Rev. Neurol. 2022; 179(3):208-217. doi: 10.1016/j.neurol.2022.11.002.
  53. Colonna M., Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 2017; 35:441–468. doi: 10.1146/annurev-immunol-051116-052358.
  54. Theoharides T.C., Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells. 2023; 12(5):688. doi: 10.3390/cells12050688.
  55. Jeong G.U., Lyu J., Kim K.D., et al. SARS-CoV-2 Infection of Microglia Elicits Proinflammatory Activation and Apoptotic Cell Death. Microbiol. Spectr. 2022; 29(3): e0109122. doi: 10.1128/spectrum.01091-22.
  56. Clough E., Inigo J., Chandra D., et al. Mitochondrial Dynamics in SARS-CoV-2 Spike Protein Treated Human Microglia: Implications for Neuro-COVID. J. Neuroimm. Pharm. 2021; 16(4):770–784. doi: 10.1007/s11481-021-10015-6.
  57. Mukai K., Tsai M., Saito H., et al. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 2018; 282(1):121–150. doi: 10.1111/imr.12634.
  58. Skaper S.D., Facci L., Zusso M., et al. Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons. Neuroscientist. 2017; 23(5):478–498. doi: 10.1177/1073858416687249.
  59. Lee, M.H.; Perl, D.P.; Nair, G.; et al. Microvascular Injury in the Brains of Patients with COVID-19. N. Engl. J. Med. 2021; 384(5):481–483. doi: 10.1056/NEJMc2033369.
  60. Zhang X., Wang Y., Dong H., et al. Induction of Microglial Activation by Mediators Released from Mast Cells Cell. Physiol. Biochem. 2016; 38(4):1520–1531. doi: 10.1159/000443093.
  61. Blinkouskaya Y., Caçoilo A., Gollamudi T., et al. Brain aging mechanisms with mechanical manifestations. Mech Ageing Dev. 2021; 200:111575. doi: 10.1016/j.mad.2021.111575.
  62. Mattson M.P., Arumugam T.V. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab. 2018; 27(6):1176–1199. doi: 10.1016/j.cmet.2018.05.011.
  63. Mavrikaki M., Lee J.D., Solomon I.H., et al. Severe COVID-19 induces molecular signatures of aging in the human brain. Nat. Aging. 2022; 2(12):1130-1137. doi: 10.1038/s43587-022-00321-w.
  64. Idrees D., Kumar V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochem. Biophys. Res. Commun. 2021; 554(1): 94–98. doi: 10.1016/j.bbrc.2021.03.100.
  65. Mysiris D.S., Vavougios G.D., Karamichali E., et al. Post-COVID-19 Parkinsonism and Parkinson’s Disease Pathogenesis: The Exosomal Cargo Hypothesis. Int. J. Mol. Sci. 2022; 23(17):9739. doi: 10.3390/ijms23179739.
  66. Groh N., Buhler A., Huang C., et al. Age-Dependent Protein Aggregation Initiates Amyloid-beta Aggregation. Front. Aging Neurosci. 2017; 9(1):138. doi: 10.3389/fnagi.2017.00138.
  67. Qin C., Zhou L., Hu Z., et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infec. Dis. 2020; 71(15):762-768. doi: 10.1093/cid/ciaa248.
  68. Cañas C.A. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals. Med. Hypotheses. 2020; 1:110345. doi: 10.1016/j.mehy.2020.110345.
  69. Davis H.E., McCorkell L., Vogel J.M., et al. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21(3):133-146. doi: 10.1038/s41579-022-00846-2.
  70. Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry. Antibodies (Basel). 2020; 9(4):33. doi: 10.3390/antib9030033.
  71. Tang K.-T., Hsu B.-C. and Chen D.-Y. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review. Front. Immunol. 2021; 12:645013. doi: 10.3389/fimmu.2021.645013.
  72. Wallukat G., Hohberger B., Wenzel K., et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J. Transl. Autoimmun. 2021; 4: 100100. doi: 10.1016/j.jtauto.2021.100100.
  73. Schofield JR. Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-COVID syndrome: 1 year on. Eur. J. Case Rep. Internal. Med. 2021; 8(3):002378. doi: 10.12890/2021_002378.
  74. Arthur J.M., Forrest J.C., Boehme K.W., et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One. 2021; 16(9):e0257016. doi: 10.1371/journal.pone.0257016.
  75. Tang K.T., Hsu B.C., Chen D.Y. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review. Front Immunol. 2021; 12:645013. doi: 10.3389/fimmu.2021.645013.
  76. Xue H., Zeng L., He H., et al. Autoimmune encephalitis in COVID-19 patients: a systematic review of case reports and case series. Front Neurol. 2023; 14:1207883. doi: 10.3389/fneur.2023.1207883.
  77. Wang J., Saguner A.M., An J., et al. Dysfunctional coagulation in COVID-19: from cell to bedside. Adv. Ther. 2020; 37(7):3033–3039, doi: 10.1007/s12325-020-01399-7.
  78. O’Sullivan J.M., Gonagle D.M., Ward S.E., et al. Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol. 2020; 7(8):e553–e555. doi: 10.1016/S2352-3026(20)30215-5.
  79. Barbosa L.C., Gonçalves T.L., de Araujo L.P., et al. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul. Pharmacol. 2021; 137:106829. doi: 10.1016/j.vph.2021.106829.
  80. Kumar M.A., Krishnaswamy M., Arul J.N. Post COVID-19 sequelae: Venous thromboembolism complicated by lower GI bleed. BMJ Case Rep. 2021; 14(1):e241059. doi: 10.1136/bcr-2020-241059.
  81. Townsend L., Fogarty H., Dyer A., et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J. Thromb. Haemost. 2021; 19(4):1064–1070. doi: 10.1111/jth.15267.
  82. Poloni T.E., Moretti M., Medici V., et al. COVID-19 Pathology in the Lung, Kidney, Heart and Brain: The Different Roles of T-Cells, Macrophages, and Microthrombosis. Cells. 2022; 11(19):3124. doi: 10.3390/cells11193124.
  83. Xia X., Wang Y., Zheng J. COVID-19 and Alzheimer's disease: how one crisis worsens the other. Transl. Neurodegener. 2021; 10(1):15. doi: 10.1186/s40035-021-00237-2.
  84. Shankar G.M., Li S., Mehta T.H., et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 2008; 14(8):837–842. doi: 10.1038/nm1782.
  85. Jin M., Shepardson N., Yang T., et al. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. U S A. 2011; 108(14):5819–5824. doi: 10.1073/pnas.1017033108.
  86. Hsu J.T.-A., Tien C.-F., Yu G.-Y., et al. The Effects of Aβ1-42 Binding to the SARS-CoV-2 Spike Protein S1 Subunit and Angiotensin-Converting Enzyme 2. Int. J. Mol. Sci. 2021; 22(15): 8226. doi: 10.3390/ijms22158226.
  87. Matias-Guiu J.A., Pytel V., Matias-Guiu J. Death rate due to COVID-19 in Alzheimer's disease and frontotemporal dementia. J. Alzheimers Dis. 2020; 78(2):537–541. doi: 10.3233/JAD-200940.
  88. Zhang J., Bishir M., Barbhuiya S., et al. Meta-Analysis of the Mechanisms Underlying COVID-19 Modulation of Parkinson’s Disease. Int. J. Mol. Sci. 2023; 24(17):13554. doi: 10.3390/ijms241713554.
  89. Simon D.K., Tanner C.M., Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020; 36(1):1–12. doi: 10.1016/j.cger.2019.08.002.
  90. Balestrino R., Schapira A.H.V. Parkinson disease. Eur. J. Neurol. 2020; 27(1):27–42. doi: 10.1111/ene.14108.
  91. Baizabal-Carvallo J.F., Alonso-Juarez M. The role of viruses in the pathogenesis of Parkinson’s disease. Neural Regen. Res. 2021; 16(6):1200–1201. doi: 10.4103/1673-5374.300437.
  92. Jiang T., Li G., Xu J, et al. The Challenge of the Pathogenesis of Parkinson’s Disease: Is Autoimmunity the Culprit? Front. Immunol. 2018; 9:2047. doi: 10.3389/fimmu.2018.02047.
  93. Sulzer D., Antonini A., Leta V., et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: From bench to bedside. NPJ Parkinson’s Dis. 2020; 6(1):18. doi: 10.1038/s41531-020-00123-0.
  94. Leta V., Urso D., Batzu L., et al. Viruses, parkinsonism and Parkinson’s disease: The past, present and future. J. Neural Transm. 2022; 129(9):1119–1132. doi: 10.1007/s00702-022-02536-y.
  95. Smadi M., Kaburis M., Schnapper Y., et al. SARS-CoV-2 susceptibility and COVID-19 illness course and outcome in people with pre-existing neurodegenerative disorders: Systematic review with frequentist and Bayesian meta-analyses. Br. J. Psychiatry. 2023; 223(2):348–361. doi: 10.1192/bjp.2023.43.
  96. Przytuła F., Kasprzak J., Dulski J., et al. Morbidity and severity of COVID-19 in patients with Parkinson’s disease treated with amantadine—A multicenter, retrospective, observational study. Park. Relat. Disord. 2023; 106:105238. doi: 10.1016/j.parkreldis.2022.105238.
  97. Semerdzhiev S.A., Fakhree M.A.A., Segers-Nolten I., et al. Interactions between SARS-CoV-2 N-Protein and alpha-Synuclein Accelerate Amyloid Formation. ACS Chem. Neurosci. 2022; 13(1):143–150. doi: 10.1021/acschemneuro.1c00666.
  98. Wang J., Dai L., Deng M., et al. SARS-CoV-2 Spike Protein S1 Domain Accelerates α-Synuclein Phosphorylation and Aggregation in Cellular Models of Synucleinopathy. Mol. Neurobiol. 2023: doi: 10.1007/s12035-023-03726-9.
  99. Antonini A., Leta V., Teo J., et al. Outcome of Parkinson’s Disease Patients Affected by COVID-19. Mov. Disord. 2020; 35(6):905–908. doi: 10.1002/mds.28104.
  100. Brown E.G., Chahine L.M., Goldman S.M., et al. The Effect of the COVID-19 Pandemic on People with Parkinson’s Disease. J. Park. Dis. 2020; 10(4):1365–1377. doi: 10.3233/JPD-202249.
  101. Leta V., Boura I., van Wamelen D.J., et al. COVID-19 and Parkinson’s disease: Acute clinical implications, long-COVID and post-COVID-19 parkinsonism. Int. Rev. Neurobiol. 2022; 165(1):63–89. doi: 10.1016/bs.irn.2022.04.004.
  102. Zhang J., Bishir M., Barbhuiya S., et al. Meta-Analysis of the Mechanisms Underlying COVID-19 Modulation of Parkinson’s Disease. Int. J. Mol. Sci. 2023; 24(17):13554 doi: 10.3390/ijms241713554.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies