Патогенез нейропсихических осложнений при коронавирусной инфекции (COVID-19)



Цитировать

Полный текст

Аннотация

У значительного числа больных инфекция, вызываемая коронавирусом SARS-Cov-2, характеризуется неврологическими и психическими осложнениями, в основе которых лежат нарушение проницаемости гематоэнцефалического барьера, проникновение в головной мозг провоспалительных цитокинов, нейровоспаление и коагулопатия. Патологоанатомические исследования головного мозга пациентов, умерших в острый период заболевания, показали наличие очагов периваскулярного воспаления, содержащих макрофаги и, в небольшом количестве, CD8+Т-клетки. В развитии нейровоспаления участвуют клетки микроглии, тучные клетки, макрофаги, эндотелиоциты. В образцах мозговой ткани наблюдались узелки микроглии, указывающие на нейрофагию и потерю нейронов. Некоторые белки SARS-Cov-2, в частности, белок S, обладают патогенными свойствами по отношению к нейронам. Биохимические маркеры в спинномозговой жидкости больных COVID-19 - NfL (легкая цепь нейрофиламентов) и GFAР (глиальный фибриллярный кислый белок) указывают на разрушение аксонов и повреждение астроцитов. У многих больных COVID-19 вследствие иммунной дисфункции и молекулярной мимикрии обнаруживаются аутоантитела к собственным антигенам, в том числе к некоторым рецепторам ЦНС, и энцефалиты. У пациентов с болезнью Альцгеймера и болезнью Паркинсона коронавирусная инфекция усиливает симптомы данных заболеваний. Целью обзора является обобщение имеющихся в литературе данных для анализа иммунопатогенеза нейропсихических осложнений острой коронавирусной инфекции (COVID-19) и постковидного синдрома.

Полный текст

Доступ закрыт

Об авторах

Николай Анатольевич Климов

ФГБНУ "Институт экспериментальной медицины"

Email: nklimov@mail.ru
ORCID iD: 0000-0002-5243-8085

старший научный сотрудник

Россия

Ольга Валерьевна Шамова

Институт экспериментальной медицины

Автор, ответственный за переписку.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801

Доцент, доктор биологических наук, член-корреспондент РАН, заведующий отделом общей патологии и патологической физиологии

Россия

Список литературы

  1. Bordallo B., Bellas M., Cortez A.F., et al. Severe COVID-19: what have we learned with the immunopathogenesis? // Adv. Rheumatol. 2020. Vol. 60. No 1. P. 50. doi: 10.1186/s42358-020-00151-7.
  2. Batiha G.E., Al-Kuraishy H.M., Al-Gareeb A.I., et al. Pathophysiology of Post-COVID syndromes: a new perspective // Virol. J. 2022. Vol. 19. No 1. P. 158. doi: 10.1186/s12985-022-01891-2.
  3. Evans J.P., Liu S.-L. Role of host factors in SARS-CoV-2 entry // J. Biol. Chem. 2021. Vol. 297. No 1. P. 100847. doi: 10.1016/j.jbc.2021.100847.
  4. Gusev E., Sarapultsev A., Solomatina L., et al. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19 // Int. J. Mol. Sci. 2022. Vol. 23. No 3. P. 1716. doi: 10.3390/ijms23031716
  5. Cantuti-Castelvetri L., Ojha R., Pedro L.D., et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity // Science. 2020. Vol. 370. No 6518. P. 856-860. doi: 10.1126/science.abd2985.
  6. Daly J.L., Simonetti B., Klein K., et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection // Science. 2020. Vol. 370. No 6518. P.861-865. doi: 10.1126/science.abd3072.
  7. Zhao J, Yuan Q, Wang H, et al. Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019 // Clin. Infect. Dis. 2020. Vol. 71. No 16. P. 2027-2034. doi: 10.1093/cid/ciaa344.
  8. Wajnberg A., Amanat F., Firpo A., et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months // Science. 2020. Vol. 370. No 6521. P. 1227-1230. doi: 10.1126/science.abd7728.
  9. Sun J., Xiao J., Sun R., et al. Prolonged Persistence of SARS-CoV-2 RNA in Body Fluids // Emerg. Infect. Dis. 2020. Vol. 26. No 8. P. 1834-1838. doi: 10.3201/eid2608.201097.
  10. Stein S.R., Ramelli S.C., Grazioli A., et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy // Nature. 2022. Vol. 612. No 7941. P. 758-763. doi: 10.1038/s41586-022-05542-y.
  11. Batiha G.E., Al-Kuraishy H.M., Al-Gareeb A.I., et al. Pathophysiology of Post-COVID syndromes: a new perspective // Virol. J. 2022. Vol. 19. No 1. P. 158. doi: 10.1186/s12985-022-01891-2.
  12. Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome // N. Engl. J. Med. 2017. Vol. 377. No 7. P. 562–572. doi: 10.1056/NEJMra1608077.
  13. Burnham E.L., Janssen W.J., Riches D.W., et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance // Eur.Respir. J. 2014. Vol. 43. No 1. P. 276–285. doi: 10.1183/09031936.00196412.
  14. Bordallo B., Bellas M., Cortez A.F., et al. Severe COVID-19: what have we learned with the immunopathogenesis? // Adv. Rheumatol. 2020. Vol. 60. No 1. P. 50. doi: 10.1186/s42358-020-00151-7.
  15. Liu J, Li S, Liu J, Liang B, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients // EBioMedicine. 2020. Vol. 55. P. 102763. doi: 10.1016/j.ebiom.2020.102763.
  16. Blanco-Melo D., Nilsson-Payant B.E., Liu W-C., et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020. Vol. 181. No 5. P. 1036-1045.e9. doi: 10.1016/j.cell.2020.04.026.
  17. Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19 // J. Allergy Clin. Immunol. 2020 Vol. 146. No 1. P. 119-127.e4. doi: 10.1016/j.jaci.2020.04.027.
  18. Yang L., Liu S., Liu J., et al. COVID-19: immunopathogenesis and Immunotherapeutics // Signal Transduct Target Ther. 2020. Vol. 5. No 1. P. 128. doi: 10.1038/s41392-020-00243-2.
  19. Soriano J.B., Murthy S., Marshall J.C., et al. WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus // Lancet Infect. Dis. 2022. Vol. 22. No 4. P. e102-e107. doi: 10.1016/S1473-3099(21)00703-9.
  20. Yong S.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments // Infect. Dis. (Lond). 2021. Vol. 53. No 10. P. 737-754. doi: 10.1080/23744235.2021.1924397.
  21. Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: major findings, mechanisms and recommendations // Nat. Rev. Microbiol. 2023. Vol. 21. No 3. P. 133-146. doi: 10.1038/s41579-022-00846-2.
  22. Peluso M.J., Lu S., Tang A.F., et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection // J. Infect. Dis. 2021. Vol. 224. No 11. P. 1839–1848. doi: 10.1093/infdis/jiab490.
  23. Swank Z., Senussi Y., Manickas-Hill Z., et al. Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is Associated With Post-acute Coronavirus Disease 2019 Sequelae // Clin. Infect. Dis. 2023. Vol. 76. No 3. P. e487-e490. doi: 10.1093/cid/ciac722.
  24. Stein S.R., Ramelli S.C., Grazioli A., et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy // Nature. 2022. Vol. 612. No 7941. P. 758-763. doi: 10.1038/s41586-022-05542-y.
  25. Taquet M., Geddes J.R., Husain M., et al. 6‐month neurological and psychiatric outcomes in 236379 survivors of COVID‐19: a retrospective cohort study using electronic health records // Lancet Psychiatry. 2021. Vol. 8. No 5. P. 416‐427. doi: 10.1016/S2215-0366(21)00084-5.
  26. Davis H.E., McCorkell L., Vogel J.M., et al. Long COVID: major findings, mechanisms and recommendations // Nat. Rev. Microbiol. 2023. Vol. 21. No 1. P. 133-146. doi: 10.1038/s41579-022-00846-2.
  27. Taquet M., Sillett R., Zhu L., et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients // Lancet Psychiatry. 2022. Vol. 9. No 10. P. 815-827. doi: 10.1016/S2215-0366(22)00260-7.
  28. Lee M.H., Perl D.P., Steiner J., et al. Neurovascular injury with complement activation and inflammation in COVID-19 // Brain. 2022. Vol. 145. No 7. P. 2555–2568. doi: 10.1093/brain/awac151.
  29. Matschke J., Lütgehetmann M., Hagel C., et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series // Lancet Neurol. 2020. Vol. 19. No 11. P. 919-929. doi: 10.1016/S1474-4422(20)30308-2.
  30. Solomon I.H., Normandin E., Bhattacharyya S., et al. Neuropathological Features of Covid-19 // N. Engl. J. Med. 2020. Vol. 383. No 10. P. 989-992. doi: 10.1056/NEJMc2019373.
  31. Barrantes F.J. Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses // ACS Chem. Neurosci. 2020. Vol. 11. No 18. P. 2793-2803. doi: 10.1021/acschemneuro.0c00434.
  32. Welcome M.O., Mastorakis N.E. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection // Inflammopharmacology. 2021. Vol. 29. No 4. P. 939-963. doi: 10.1007/s10787-021-00806-x.
  33. Meinhardt J, Radke J, Dittmayer C et al (2021) Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 // Nat. Neurosci. Vol. 24. No 2. P. 168–175. doi: 10.1038/s41593-020-00758-5.
  34. Burks S.M., Rosas-Hernandez H., Alejandro Ramirez-Lee M., et al. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? // Brain Behav. Immun. 2021. Vol. 95. No 1. P. 7-14. doi: 10.1016/j.bbi.2020.12.031.
  35. Granholm AC. Long-Term Effects of SARS-CoV-2 in the Brain: Clinical Consequences and Molecular Mechanisms // J. Clin. Med. 2023. Vol. 12. No 9. P. 3190. doi: 10.3390/jcm12093190.
  36. Kaplan L., Chow B.W., Gu C. Neuronal regulation of the blood–brain barrier and neurovascular coupling // Nat. Rev. Neurosci. 2020. Vol. 21. No 8. P. 416–432. doi: 10.1038/s41583-020-0322-2.
  37. Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms // CNS Neurosci. Ther. 2021. Vol. 27. No 1. P. 36-47. doi: 10.1111/cns.13569.
  38. Wang F., Kream R.M., Stefano G.B. Long-Term Respiratory and Neurological Sequelae of COVID-19 // Med. Sci. Monit. 2020.Vol. 26. P. e928996. doi: 10.12659/MSM.928996.
  39. Rauti R., Shahoha M., Leichtmann-Bardoogo Y. et al. Effect of SARS-CoV-2 proteins on vascular permeability // Elife. 2021. Vol. 10. P. e69314. doi: 10.7554/eLife.69314.
  40. Pezzini A, Padovani A: Lifting the mask on neurological manifestations of COVID-19 // Nat. Rev. Neurol. 2020. Vol. 24. No 1. P. 1–9. doi: 10.7554/eLife.69314.
  41. Zhang L, Zhou L, Bao L et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration // Signal Transduct. Target Ther. 2021. Vol. 6. No 1. P. 337-373. doi: 10.1038/s41392-021-00719-9.
  42. Song E., Zhang C., Israelow B., et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain // J. Exp. Med. 2021. Vol. 218. No 3. P. e20202135. doi: 10.1084/jem.20202135.
  43. Spudich S., Nath A. Nervous system consequences of COVID-19 // Science. 2022. Vol. 375. No 6578. P. 267–269. doi: 10.1126/science.abm2052.
  44. Brann D.H., Tsukahara T., Weinreb C., et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia // Sci. Adv. 2020. Vol. 6. No 31. P. eabc5801. doi: 10.1126/sciadv.abc5801.
  45. Soung A.L., Vanderheiden A., Nordvig A.S., et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain // 2022. Vol. 145. No 12. P. 4193-4201. doi: 10.1093/brain/awac270.
  46. Poloni T.E., Moretti M., Medici V., et al. COVID-19 Pathology in the Lung, Kidney, Heart and Brain: The Different Roles of T-Cells, Macrophages, and Microthrombosis // Cells. 2022. Vol. 11. No 19. P. 3124. doi: 10.3390/cells11193124.
  47. Frank S. Catch me if you can: SARS-CoV-2 detection in brains of deceased patients with COVID-19 // Lancet Neurol. 2020 Vol. 19. No 11. P. 883-884. doi: 10.1016/S1474-4422(20)30371-9.
  48. Gafson A.R., Barthe´lemy N.R., Bomont P., et al. Neurofilaments: neurobiological foundations for biomarker applications // Brain. 2020. Vol. 143. No 7. P. 1975–1998. doi: 10.1093/brain/awaa098.
  49. Zingaropoli M.A., Pasculli P., Barbato C., et al. Biomarkers of Neurological Damage: From Acute Stage to Post-Acute Sequelae of COVID-19 // Cells. 2023. Vol. 12. No 18. P. 2270. doi: 10.3390/cells12182270.
  50. Kanberg N, Simrén J, Edén A, et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up // EBioMedicine. 2021 Vol. 70. Р. 103512. doi: 10.1016/j.ebiom.2021.103512.
  51. Karnik M., Beeraka N.M., Uthaiah C.A., et al. A Review on SARSCoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development // Mol. Neurobiol. 2021. Vol. 58. No 9. P. 4535–4563. doi: 10.1007/s12035-021-02399-6.
  52. Chaumont H., Kaczorowski F., San-Galli A., et al. Cerebrospinal fluid biomarkers in SARS-CoV-2 patients with acute neurological syndromes // Rev. Neurol. 2022. Vol. 179. No 3. P. 208-217. doi: 10.1016/j.neurol.2022.11.002.
  53. Colonna M., Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration // Annu. Rev. Immunol. 2017. Vol. 35. P. 441–468. doi: 10.1146/annurev-immunol-051116-052358.
  54. Theoharides T.C., Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID // Cells. 2023. Vol. 12. No 5. P. 688. doi: 10.3390/cells12050688.
  55. Jeong G.U., Lyu J., Kim K.D., et al. SARS-CoV-2 Infection of Microglia Elicits Proinflammatory Activation and Apoptotic Cell Death // Microbiol. Spectr. 2022. Vol. 29. No 3. P. e0109122. doi: 10.1128/spectrum.01091-22.
  56. Clough E., Inigo J., Chandra D., et al. Mitochondrial Dynamics in SARS-CoV-2 Spike Protein Treated Human Microglia: Implications for Neuro-COVID // J. Neuroimm. Pharm. 2021. Vol. 16. No 4. P. 770–784. doi: 10.1007/s11481-021-10015-6.
  57. 57. Mukai K., Tsai M., Saito H., et al. Mast cells as sources of cytokines, chemokines, and growth factors // Immunol. Rev. 2018. Vol. 282. No 1. P. 121–150. doi: 10.1111/imr.12634.
  58. Skaper S.D., Facci L., Zusso M., et al. Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons // Neuroscientist. 2017. Vol. 23. No 5. P. 478–498. doi: 10.1177/1073858416687249.
  59. Lee, M.H.; Perl, D.P.; Nair, G.; et al. Microvascular Injury in the Brains of Patients with COVID-19 // N. Engl. J. Med. 2021. Vol. 384. No 5. P. 481–483. doi: 10.1056/NEJMc2033369.
  60. Zhang X., Wang Y., Dong H., et al. Induction of Microglial Activation by Mediators Released from Mast Cells Cell // Physiol. Biochem. 2016. Vol. 38. No 4. P. 1520–1531. doi: 10.1159/000443093.
  61. Blinkouskaya Y., Caçoilo A., Gollamudi T., et al. Brain aging mechanisms with mechanical manifestations // Mech Ageing Dev. 2021. Vol. 200. P. 111575. doi: 10.1016/j.mad.2021.111575.
  62. Mattson M.P., Arumugam T.V. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States // Cell Metab. 2018. Vol. 27. Vol. 6. P. 1176–1199. doi: 10.1016/j.cmet.2018.05.011.
  63. Mavrikaki M., Lee J.D., Solomon I.H., et al. Severe COVID-19 induces molecular signatures of aging in the human brain // Nat. Aging. 2022. Vol. 2. No. 12. P. 1130-1137. doi: 10.1038/s43587-022-00321-w.
  64. Idrees D., Kumar V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration // Biochem. Biophys. Res. Commun. 2021. Vol. 554. No 1. P. 94–98. doi: 10.1016/j.bbrc.2021.03.100.
  65. Mysiris D.S., Vavougios G.D., Karamichali E., et al. Post-COVID-19 Parkinsonism and Parkinson’s Disease Pathogenesis: The Exosomal Cargo Hypothesis // Int. J. Mol. Sci. 2022. Vol. 23. No 17. P. 9739. doi: 10.3390/ijms23179739.
  66. Groh N., Buhler A., Huang C., et al. Age-Dependent Protein Aggregation Initiates Amyloid-beta Aggregation // Front. Aging Neurosci. 2017. Vol. 9. No 1. P. 138. doi: 10.3389/fnagi.2017.00138.
  67. Qin C., Zhou L., Hu Z., et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China // Clin. Infec. Dis. // 2020. Vol. 71. No 15. P. 762-768. doi: 10.1093/cid/ciaa248.
  68. Cañas C.A. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals // Med. Hypotheses. 2020. Vol. 1. P. 110345. doi: 10.1016/j.mehy.2020.110345.
  69. Davis H.E., McCorkell L., Vogel J.M., et al. Long COVID: major findings, mechanisms and recommendations // Nat. Rev. Microbiol. 2023. Vol. 21. No 3. P. 133-146. doi: 10.1038/s41579-022-00846-2.
  70. Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry // Antibodies (Basel). 2020. Vol. 9. No 4. P. 33. doi: 10.3390/antib9030033.
  71. Tang K.-T., Hsu B.-C. and Chen D.-Y. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review // Front. Immunol. 2021. Vol. 12. P. 645013. doi: 10.3389/fimmu.2021.645013.
  72. Wallukat G., Hohberger B., Wenzel K., et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms // J. Transl. Autoimmun. 2021. Vol. 4. P. 100100. doi: 10.1016/j.jtauto.2021.100100.
  73. Schofield JR. Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-COVID syndrome: 1 year on // Eur. J. Case Rep. Internal. Med. 2021. Vol. 8. No 3. P. 002378. doi: 10.12890/2021_002378.
  74. Arthur J.M., Forrest J.C., Boehme K.W., et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection // PLoS One. 2021. Vol. 16. No 9. P. e0257016. doi: 10.1371/journal.pone.0257016.
  75. Tang K.T., Hsu B.C., Chen D.Y. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review // Front Immunol. 2021. Vol. 12. P. 645013. doi: 10.3389/fimmu.2021.645013.
  76. Xue H., Zeng L., He H., et al. Autoimmune encephalitis in COVID-19 patients: a systematic review of case reports and case series // Front Neurol. 2023. Vol. 14. P. 1207883. doi: 10.3389/fneur.2023.1207883.
  77. Wang J., Saguner A.M., An J., et al. Dysfunctional coagulation in COVID-19: from cell to bedside // Adv. Ther. 2020. Vol. 37. No 7. P. 3033–3039, doi: 10.1007/s12325-020-01399-7.
  78. O’Sullivan J.M., Gonagle D.M., Ward S.E., et al. Endothelial cells orchestrate COVID-19 coagulopathy // Lancet Haematol. 2020. Vol. 7. No 8. P. e553–e555. doi: 10.1016/S2352-3026(20)30215-5.
  79. Barbosa L.C., Gonçalves T.L., de Araujo L.P., et al. Endothelial cells and SARS-CoV-2: An intimate relationship // Vascul. Pharmacol. 2021.Vol. 137. P. 106829. doi: 10.1016/j.vph.2021.106829.
  80. Kumar M.A., Krishnaswamy M., Arul J.N. Post COVID-19 sequelae: Venous thromboembolism complicated by lower GI bleed // BMJ Case Rep. 2021. Vol. 14. No 1. P. e241059. doi: 10.1136/bcr-2020-241059.
  81. Townsend L., Fogarty H., Dyer A., et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response // J. Thromb. Haemost. 2021. Vol. 19. No 4. P. 1064–1070. doi: 10.1111/jth.15267.
  82. Poloni T.E., Moretti M., Medici V., et al. COVID-19 Pathology in the Lung, Kidney, Heart and Brain: The Different Roles of T-Cells, Macrophages, and Microthrombosis // Cells. 2022. Vol. 11. No 19. P. 3124. doi: 10.3390/cells11193124.
  83. Xia X., Wang Y., Zheng J. COVID-19 and Alzheimer's disease: how one crisis worsens the other // Transl. Neurodegener. 2021. Vol. 10. No 1. P. 15. doi: 10.1186/s40035-021-00237-2.
  84. Shankar G.M., Li S., Mehta T.H., et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory // Nat. Med. 2008.Vol. 14. No 8. P. 837–842. doi: 10.1038/nm1782.
  85. Jin M., Shepardson N., Yang T., et al. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration // Proc. Natl. Acad. Sci. U S A. 2011. Vol. 108. No 14. P. 5819–5824. doi: 10.1073/pnas.1017033108.
  86. Hsu J.T.-A., Tien C.-F., Yu G.-Y., et al. The Effects of Aβ1-42 Binding to the SARS-CoV-2 Spike Protein S1 Subunit and Angiotensin-Converting Enzyme 2 // Int. J. Mol. Sci. 2021. Vol. 22. No 15. P. 8226. doi: 10.3390/ijms22158226.
  87. Matias-Guiu J.A., Pytel V., Matias-Guiu J. Death rate due to COVID-19 in Alzheimer's disease and frontotemporal dementia // J. Alzheimers Dis. 2020. Vol. 78. No 2. P. 537–541. doi: 10.3233/JAD-200940.
  88. Zhang J., Bishir M., Barbhuiya S., et al. Meta-Analysis of the Mechanisms Underlying COVID-19 Modulation of Parkinson’s Disease // Int. J. Mol. Sci. 2023. Vol. 24. No 17. P. 13554. doi: 10.3390/ijms241713554.
  89. Simon D.K., Tanner C.M., Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology // Clin. Geriatr. Med. 2020. Vol. 36. No 1. P. 1–12. doi: 10.1016/j.cger.2019.08.002.
  90. Balestrino R., Schapira A.H.V. Parkinson disease // Eur. J. Neurol. 2020. Vol. 27. No 1. P. 27–42. doi: 10.1111/ene.14108.
  91. Baizabal-Carvallo J.F., Alonso-Juarez M. The role of viruses in the pathogenesis of Parkinson’s disease // Neural Regen. Res. 2021. Vol. 16. No 6. P. 1200–1201. doi: 10.4103/1673-5374.300437.
  92. Jiang T., Li G., Xu J, et al. The Challenge of the Pathogenesis of Parkinson’s Disease: Is Autoimmunity the Culprit? // Front. Immunol. 2018. Vol. 9. P. 2047. doi: 10.3389/fimmu.2018.02047.
  93. Sulzer D., Antonini A., Leta V., et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: From bench to bedside // NPJ Parkinson’s Dis. 2020. Vol. 6. No 1. P. 18. doi: 10.1038/s41531-020-00123-0.
  94. Leta V., Urso D., Batzu L., et al. Viruses, parkinsonism and Parkinson’s disease: The past, present and future // J. Neural Transm. 2022. Vol. 129. No 9. P. 1119–1132. doi: 10.1007/s00702-022-02536-y.
  95. Smadi M., Kaburis M., Schnapper Y., et al. SARS-CoV-2 susceptibility and COVID-19 illness course and outcome in people with pre-existing neurodegenerative disorders: Systematic review with frequentist and Bayesian meta-analyses // Br. J. Psychiatry. 2023. Vol. 223. No 2. P. 348–361. doi: 10.1192/bjp.2023.43.
  96. Przytuła F., Kasprzak J., Dulski J., et al. Morbidity and severity of COVID-19 in patients with Parkinson’s disease treated with amantadine—A multicenter, retrospective, observational study // Park. Relat. Disord. 2023. Vol. 106. P. 105238. doi: 10.1016/j.parkreldis.2022.105238.
  97. Semerdzhiev S.A., Fakhree M.A.A., Segers-Nolten I., et al. Interactions between SARS-CoV-2 N-Protein and alpha-Synuclein Accelerate Amyloid Formation // ACS Chem. Neurosci. 2022. Vol. 13. No 1. P. 143–150. doi: 10.1021/acschemneuro.1c00666.
  98. Wang J., Dai L., Deng M., et al. SARS-CoV-2 Spike Protein S1 Domain Accelerates α-Synuclein Phosphorylation and Aggregation in Cellular Models of Synucleinopathy // Mol. Neurobiol. 2023. doi: 10.1007/s12035-023-03726-9.
  99. Antonini A., Leta V., Teo J., et al. Outcome of Parkinson’s Disease Patients Affected by COVID-19 // Mov. Disord. 2020. Vol. 35. No 6. P. 905–908. doi: 10.1002/mds.28104.
  100. Brown E.G., Chahine L.M., Goldman S.M., et al. The Effect of the COVID-19 Pandemic on People with Parkinson’s Disease // J. Park. Dis. 2020. Vol. 10. No 4. P. 1365–1377. doi: 10.3233/JPD-202249.
  101. Leta V., Boura I., van Wamelen D.J., et al. COVID-19 and Parkinson’s disease: Acute clinical implications, long-COVID and post-COVID-19 parkinsonism // Int. Rev. Neurobiol. 2022. Vol. 165. No 1. P. 63–89. doi: 10.1016/bs.irn.2022.04.004.
  102. Zhang J., Bishir M., Barbhuiya S., et al. Meta-Analysis of the Mechanisms Underlying COVID-19 Modulation of Parkinson’s Disease // Int. J. Mol. Sci. 2023. Vol. 24. No 17. P. 13554 doi: 10.3390/ijms241713554.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах