NEURO-IMMUNE DISORDERS IN A MODEL OF POST-VIRAL CHRONIC FATIGUE SYNDROME. CORRECTION WITH RECOMBINANT IL-2 (RONCOLEUKIN)
- Authors: Filatenkova T.A1, Shanin S.N1, Fomicheva E.E1, Parshina Y.S1, Serebryanaya N.B1
-
Affiliations:
- ФГБНУ "Институт Экспериментальной Медицины"
- Section: Original research
- Published: 15.06.2025
- URL: https://journals.eco-vector.com/MAJ/article/view/677939
- DOI: https://doi.org/10.17816/MAJ677939
- ID: 677939
Cite item
Full Text
Abstract
Introduction Chronic fatigue syndrome is a severe chronic disease that leads to disruption of body systems. The lack of accurate diagnostic mechanisms makes it difficult to assess its prevalence, as well as to select an adequate treatment strategy. During the COVID-19 pandemic, the number of patients with symptoms of Chronic Fatigue Syndrome has sharply increased. There is a lot of evidence in the scientific literature that many infectious diseases can cause symptoms of this syndrome, for example influenza, enteroviruses. Neurological disorders in Chronic Fatigue Syndrome include memory problems, headaches, sleep disorders, unexplained joint and muscle pain, hypoactivation of the hypothalamus-pituitary-adrenal axis. The aim was to determine the possibility of correcting neuroinflammation and manifestations of fatigue/tiredness with a recombinant cytokine IL-2 preparation in rats under the Chronic Fatigue Syndrome model.
Methods. The study was performed on 50 male Wistar rats, the disease was modeled using a single intraperitoneal injection of Poly IC in a dose of 3 mg / kg of body weight of the animal. Half of the subjects were administered recombinant IL-2 (30 mg / kg) on the first day after the induction of the syndrome. On the 7th and 10th days of the experiment, motor activity, emotional status and the degree of physical fatigue were analyzed, after collecting the material, the concentration of lactate in the blood plasma, the degree of gene expression (IL-1β, IL10, INFα, 5HTT, TLR3) in the hypothalamus, as well as the activity of spleen lymphocytes (cytotoxic and proliferative activity), as a marker of immune system activity were determined.
Results. It was shown that a single administration of the recombinant cytokine IL-2 had a positive effect on the motor activity of experimental animals and normalized emotional reactions, reducing the level of anxiety-like behavior, restored the cytotoxic and proliferative activity of spleen lymphocytes, and prevented an increase in the expression of genes associated with inflammation. The exception was the TLR3 gene, the expression level of which did not decrease at all stages of the experiment, although positive dynamics were noted after the injection of recombinant IL-2.
Conclusion. The administration of the recombinant cytokine IL-2 to animals did not cancel the muscle weakness, it accelerated the normalization of physical activity and emotional status of animals, reducing manifestations of anxiety already on the 7th day of the experiment, and not on the 10th day, as in the group of rats that did not receive treatment.
Full Text

About the authors
Tatiana A Filatenkova
ФГБНУ "Институт Экспериментальной Медицины"
Author for correspondence.
Email: lero269@gmail.com
Sergey N Shanin
ФГБНУ "Институт Экспериментальной Медицины"
Email: hanins@yandex.ru
ORCID iD: 0000-0001-8829-6552
Elena E Fomicheva
ФГБНУ "Институт Экспериментальной Медицины"
Email: eefomicheva@rambler.ru
ORCID iD: 0000-0001-9271-9757
Yulia S Parshina
ФГБНУ "Институт Экспериментальной Медицины"
Email: yuparshina@yandex.ru
ORCID iD: 0009-0003-5072-420X
Natalia B Serebryanaya
ФГБНУ "Институт Экспериментальной Медицины"
Email: nbvma@mail.ru
ORCID iD: 0000-0002-2418-9368
References
- Kasimir F., Toomey D., Liu Z., Kaiping A.C., Ariza M.E., Prusty B.K. Tissue specific signature of HHV-6 infection in ME/CFS. Front. Mol. Biosci. 2022. № 9. Pp,1044964. doi: 10.3389/fmolb.2022.1044964
- Lim E-J., Ahn Y-C, Jang E-C., Lee S-W., Lee S-H., Son C-G. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/ myalgic encephalomyelitis (CFS/ME). J. of Translational Medicine. 2020. Vol.18. №1. Pp.1-15. https://doi.org/10.1186/s12967-020-02269-0 10.
- Morris G., Maes M., Berk M., Puri B.K. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metabolic Brain Disease. 2019. Vol. 34, № 2. Pp.385-415. https://doi.org/10.1007/s11011-019-0388-6
- Hanson M.R, Germain A. Letter to the Editor of Metabolites. Metabolites. 2020. Vol. 10. № 5. Art.216. https://doi.org/10.3390/metabo10050216
- Magnus P., Gunnes N., Tveito K., Bakken I.J., Ghaderi S., Stoltenberg C., Hornig M., Lipkin W.I., Trogstad L., Håberg S.E. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is associated with pandemic influenza infection, but not with an adjuvanted pandemic influenza vaccine. Vaccine. 2015 Nov 17. Vol. 33. № 46. Pp.6173-7. doi: 10.1016/j.vaccine.2015.10.018.
- Hanson M.R. The viral origin of myalgic encephalomyelitis/chronic fatigue syndrome. PLoS Pathog. 2023. Vol.19. № 8. Art. e1011523. https://doi.org/10.1371/journal.ppat.1011523
- Lerner A.M., Beqaj S.H., Deeter R.G., Fitzgerald J.T. Valacyclovir treatment in Epstein-Barr virus subset chronic fatigue syndrome: thirty-six months follow-up. In Vivo. 2007 Sep-Oct. Vol. 21. № 5. Pp.707-13. https://pubmed.ncbi.nlm.nih.gov/18019402/
- Montoya J.G., Kogelnik A.M., Bhangoo M., Lunn M.R., Flamand L., Merrihew L.E., Watt T., Kubo J.T., Paik J., Desai M. Randomized clinical trial to evaluate the efficacy and safety of valganciclovir in a subset of patients with chronic fatigue syndrome. J Med Virol. 2013 Dec. Vol. 8. № 5(12) . pp. 2101-9. doi: 10.1002/jmv.23713.
- Davis, H.E., McCorkell, L., Vogel, J.M. Topol E J. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol . 2023. Vol.21. pp. 133–146 . https://doi.org/10.1038/s41579-022-00846-2
- Davis H.E., Assaf G.S., McCorkell L., Wei H., Low R.J., Re'em Y., Redfield S, Austin JP, Akrami A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021.№.38. art.101019. doi: 10.1016/j.eclinm.2021.101019
- Perrin R., Riste L., Hann M., Walther A., Mukherjee A., Heald A. Into the looking glass: post-viral syndrome post COVID-19. Med Hypotheses. 2020. № 144. Art.110055. doi: 10.1016/j.mehy.2020.110055
- O’Callaghan J.P., Miller D.B. Neuroinflammation disorders exacerbated by environmental stressors. Metabolism. 2019. № 100S. art. 153951. doi: 10.1016/j.metabol.2019.153951
- Katafuchi Т., Kondo Т., Yasaka Т., Kubo К., Take S. Prolonged effects of polyriboinosinic: polyribocytidylic acid on spontaneous running wheel activity and brain interferon alfa mRNA in rats: a model for immunologically induced fatigue . Neuroscience. 2003. Vol.120. Pp.837-845. doi: 10.1016/s0306-4522(03)00365-8
- Jason L.A., Porter N., Herrington J., Sorenson M., Kubow S. Kindling and Oxidative Stress as Contributors to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J. Behav. Neurosci. Res. 2009. № 7. Pp. 1–17. https://pubmed.ncbi.nlm.nih.gov/21253446/
- Cohen J, Mathew A, Dourvetakis KD, Sanchez-Guerrero E, Pangeni RP, Gurusamy N, Aenlle KK, Ravindran G, Twahir A, Isler D, Sosa-Garcia SR, Llizo A, Bested AC, Theoharides TC, Klimas NG, Kempuraj D. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells. 2024 Mar 14;13(6):511. doi: 10.3390/cells13060511
- Pasciuto E., Burton O.T., Roca C.P., Lagou V., Rajan W.D., Theys T., Mancuso R., Tito R.Y., Kouser L., Callaerts-Vegh .Z, de la Fuente A.G., Prezzemolo T., Mascali L.G., Brajic A., Whyte C.E., Yshii L., Martinez-Muriana A., Naughton M., Young A., Moudra A., Lemaitre P., Poovathingal S., Raes J., De Strooper B., Fitzgerald D.C., Dooley J., Liston A. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020 Aug 6. Vol. 182. № 3. Pp.625-640.e24. doi: 10.1016/j.cell.2020.06.026)
- Ito M., Komai K., Mise-Omata S., Iizuka-Koga M., Noguchi Y., Kondo T., Sakai R., Matsuo K., Nakayama T., Yoshie O., Nakatsukasa H., Chikuma S., Shichita T., Yoshimura A. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature. 2019 Jan. Vol, 565. № 7738. Pp.246-250. doi: 10.1038/s41586-018-0824-5
- Dombrowski Y., O'Hagan T., Dittmer M., Penalva R., Mayoral S. R., Bankhead P., Fleville S., Eleftheriadis G., Zhao C., Naughton M., Hassan R., Moffat J., Falconer J., Boyd A., Hamilton P., Allen I.V., Kissenpfennig A., Moynagh P.N., Evergren E., Perbal B., Williams A.C., Ingram R.J., Chan J.R., Franklin R.J.M., Fitzgerald D.C. Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci. 2017. № 20. Pp. 674–680. https://doi.org/10.1038/nn.4528
- Raposo C., Graubardt N., Cohen M., Eitan C., London A., Berkutzki .T, Schwartz M. CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles. J Neurosci. 2014 Jul 30. Vol. 34. № 31. Pp. 10141-55. doi: 10.1523/JNEUROSCI.0076-14.2014.
- Liesz A., Suri-Payer E., Veltkamp C., Doerr H., Sommer C., Rivest S., Giese T., Veltkamp R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 2009. №15. Pp.192–199. doi: 10.1038/nm.1927.
- Krämer T.J., Hack N., Brühl T.J., Menzel L., Hummel R., Griemert E.V., Klein M., Thal S.C., Bopp T., Schäfer M.K.E. Correction to: Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-γ gene expression in acute experimental traumatic brain injury. J Neuroinflammation. 2019 Sep 7, Vol.16. № 1. Art.176. doi: 10.1186/s12974-019-1577-2. Erratum for: J Neuroinflammation. 2019 Aug 5;16(1):163. doi: 10.1186/s12974-019-1550-0. PMID: 31493788; PMCID: PMC6731564
- Liston A., Pasciuto E., Fitzgerald D.C., Yshii L. Brain regulatory T cells. Nat Rev Immunol. 2024 May, Vol. 24. № 5. Pp.326-337. doi: 10.1038/s41577-023-00960-z.
- Yshii L., Pasciuto E., Bielefeld P., Mascali L., Lemaitre P., Marino M., Dooley J., Kouser L., Verschoren S., Lagou V., Kemps H., Gervois P., de Boer A., Burton O.T., Wahis J., Verhaert J., Tareen S.H.K., Roca C.P., Singh K., Whyte C.E., Kerstens A., Callaerts-Vegh Z., Poovathingal S., Prezzemolo T., Wierda K., Dashwood A., Xie J., Van Wonterghem E., Creemers E., Aloulou M., Gsell W., Abiega O., Munck S., Vandenbroucke R.E., Bronckaers A., Lemmens R., De Strooper B., Van Den Bosch L., Himmelreich U., Fitzsimons C.P., Holt M.G., Liston A. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat Immunol. 2022 Jun. Vol. 23. № 6. Pp.878-891. doi: 10.1038/s41590-022-01208-z.
- Serebryanaya N.B., Fomicheva E.E., Filatenkova T.A., Shanin S.N. Protective capabilities of IL-2 in conditions of recovery after traumatic brain injury in animals of different ages // Immunology. - 2020. - V. 41, No. 6. - P. 519-526/ (In Russ.) DOI: https://doi.org/10.33029/0206-4952-2020-41-6-519-526
- Fomicheva E.E., Shanin S.N., Filatenkova T.A., Serebryanaya N.B. IL-2 as a regulator of stress hormone levels and the neurotropic factor BDNF in experimental traumatic brain injury//Medical Immunology. - 2020. - V.22, No.4. - P.647-656. (In Russ.) https://doi.org/10.15789/1563-0625-IAR-1973
- Rybakina E. G., Shanin S. N., Fomicheva E. E., Kozinets I. A., Filatenkova T. A., Dmitrienko E. V. Narusheniya vzaimodeystviya immunnoy i neyroendokrinnoy sistem pri stresse, sindrome khronicheskoy ustalosti i sposoby ikh korrektsii. Meditsinskiy akademicheskiy zhurnal. 2010;10(4):161-174. (In Russ.). https://doi.org/10.17816/MAJ104161-174
- Fischer S. The hypothalamus in anxiety disorders. Handb Clin Neurol. 2021. №.180. pp. 149-160. doi: 10.1016/B978-0-12-820107-7.00009-4.
- Murray D.R., Prokosch M.L., Airington Z. PsychoBehavioroimmunology: Connecting the Behavioral Immune System to Its Physiological Foundations. Front. Psychol. 2019. № 10. Art.200. doi: 10.3389/fpsyg.2019.00200.
- Li Y.D., Luo Y.J., Chen Z.K., Quintanilla L., Cherasse Y., Zhang L., Lazarus M., Huang Z.L., Song J. Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior. Nat Neurosci. 2022 May. Vol. 25. № 5. Pp.630-645. doi: 10.1038/s41593-022-01065-x.
- Huang Z., Meola D., Petitto J.M.. Loss of CNS IL-2 gene expression modifies brain T lymphocyte trafficking: response of normal versus autoreactive Treg-deficient T cells. Neurosci Lett. 2011 Jul 25. Vol. 499. № 3. pp.213-8. doi: 10.1016/j.neulet.2011.05.230.
- Meola D., Huang Z., Ha G.K., Petitto J.M. Loss of Neuronal Phenotype and Neurodegeneration: Effects of T Lymphocytes and Brain Interleukin-2. J Alzheimers Dis Parkinsonism. 2013 Jun. Suppl 10:003. doi: 10.4172/2161-0460.s10-003.
- Meola D.M., Huang Z., King M., Petitto J.M.. Loss of cholinergic phenotype in septohippocampal projection neurons: relation to brain versus peripheral IL-2 deficiency. Neurosci Lett. 2013 Feb 28. Art. 539:60-4. doi: 10.1016/j.neulet.2013.01.054
- Martinez H.A., Koliesnik I., Kaber G., Reid J.K., Nagy N., Barlow G., Falk B.A., Medina C.O., Hargil A., Zihsler S., Vlodavsky I., Li J.P., Pérez-Cruz M., Tang S.W., Meyer E.H., Wrenshall L.E., Lord J.D., Garcia K.C., Palmer T.D., Steinman L., Nepom G.T., Wight T.N., Bollyky P.L., Kuipers H.F. Regulatory T cells use heparanase to access IL-2 bound to extracellular matrix in inflamed tissue. Nat Commun. 2024 Feb 20. Vol.15. № 1. Pp.1564. doi: 10.1038/s41467-024-45012-9
- Saleem B.N., Ghirmay K., Kahase M. In silico comparison of interleukin-2 of Homo sapiens with different species. Pharma Focus: ERIPA. 2011. Vol.14. Pp. 32–7. https://www.academia.edu/1153368/N_Saleem_Basha_Kewani_Ghirmay_and_Melles_Kahsase_In_silico_comparison_of_interleukin_2_of_Homo_sapiens_with_different_species_Pharma_Focus_The_journal_of_Eritrean_Pharmaceutical_Association_ERIPA_Vol_14_Dec_10_2011_pp32_37
- Noda M., Katafuchi T., Kondo T., Take S., Yoshimura M. Brain cytokines and the 5-HT system during poly I:C-induced fatigue. Ann N Y Acad Sci. 2006 Nov. № 1088. Pp.230-7. doi: 10.1196/annals.1366.020
- Field R., Campion S., Warren C., Murray C., Cunningham C.. Systemic challenge with the TLR3 agonist poly I:C induces amplified IFNalpha/beta and IL-1beta responses in the diseased brain and exacerbates chronic neurodegeneration. Brain Behav Immun. 2010. Vol,24. № 6. pp.:996-1007. doi: 10.1016/j.bbi.2010.04.004
- Vandestadt C., Vanwalleghem G.C., Khabooshan M.A., Douek A.M., Castillo H.A., Li M., Schulze K., Don E., Stamatis S.A., Ratnadiwakara M., Änkö M.L., Scott E.K., Kaslin J. RNA-induced inflammation and migration of precursor neurons initiates neuronal circuit regeneration in zebrafish. Dev Cell. 2021 Aug 23. Vol. 56. № 16. Pp.2364-2380.e8. doi: 10.1016/j.devcel.2021.07.021
- Matsuoka K.I. Low-dose interleukin-2 as a modulator of Treg homeostasis after HSCT: current understanding and future perspectives. Int J Hematol. 2018. № 107. Pp.130–137. doi: 10.1007/s12185-017-2386-y
- Mahmoudpour S.H., Jankowski M., Valerio L., Becker C., Espinola-Klein C., Konstantinides S., Quitzau K., Barco S. Safety of low-dose subcutaneous recombinant interleukin-2: systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2019 May 9. Vol. 9. № 1. Pp.7145. doi: 10.1038/s41598-019-43530-x.
- Serebryanaya N.B., Filatenkova T.A., Shanin S.N., Fomicheva E.E. Correction of neuro-immune disorders in the model of post-viral chronic fatigue syndrome with sodium deoxyribonucleate // Problems of Medical Mycology. - 2023. - Vol. 25, No. 2. - P. 175.(In Rus.) https://mycology.szgmu.ru/images/2-2023.pdf
Supplementary files
