Computer magnitocardiography in myocardial reserve assessment
- Authors: Ushakov I.В.1, Bukhtijarov I.V.1, Rizhenkov S.P.1, Vasnev А.V.2, Maslennikov Y.V.2, Kondratyuck L.L.3
-
Affiliations:
- State Scientific and Research Institute of Military Medicine
- Scientific and Research Association KRIOTON Ltd.
- Gagarin State Scientific and Research Center for Cosmonaut Training
- Issue: Vol 7, No 1 (2007)
- Pages: 102-111
- Section: New technologies in diagnostics and treatment of atherosclerosis
- Published: 15.02.2007
- URL: https://journals.eco-vector.com/MAJ/article/view/692627
- ID: 692627
Cite item
Abstract
The purpose of the present work was to disclose the number of the qualitative and quantitative magnetocardiographic (MCG) parameters for evaluation of the effects the breathing and stress tests exerted on the functional myocardial reserve in 30 normal and 10 subjects with old myocardial infarction. Computerized magnetocardiography was fulfilled before (resting subjects), during and after (resting subjects) the Stange test and Valsalva maneuver (7 normal subjects), before and after the standartized knee-bending exercise. The next trends were revealed: an increase in «curvature» of the magnetic field isolines distribution on the magnetic field maps (in the area of the right atrium projection) and the plane summary current of the myocardium of the atrial system in the frontal plane during the breathing tests, related to an increase in the right atrium hydrostatic pressure and hemodynamic reserve volume; predominance of the right atrium and the right ventricle current components in the summary currents of the atria and the ventricles; an increase in a magnetocardiosignal amplitude on the ST segment and the T wave amplitude of the «basic» PQRST magnetocardiocycle after the knee-bending exercise in contractile reserve-positive subjects, as compared with the baseline measurements at rest and the reverse trend in contractile reserve-negative subjects, up to the negative T wave formation. Our results showed that CMCG method allows to evaluate functional hemodynamic and contractile myocardial reserves in a new fashion from the electromagnetic viewpoint by analyzing CMCG parameters, describing interatrial, interventricular and atrio-ventricular interactions.
About the authors
I. В. Ushakov
State Scientific and Research Institute of Military Medicine
Author for correspondence.
Email: shabanov@mail.rcom.ru
Russian Federation, Saint Petersburg
I. V. Bukhtijarov
State Scientific and Research Institute of Military Medicine
Email: shabanov@mail.rcom.ru
Russian Federation, Saint Petersburg
S. P. Rizhenkov
State Scientific and Research Institute of Military Medicine
Email: shabanov@mail.rcom.ru
Russian Federation, Saint Petersburg
А. V. Vasnev
Scientific and Research Association KRIOTON Ltd.
Email: shabanov@mail.rcom.ru
Russian Federation, Moscow
Yu. V. Maslennikov
Scientific and Research Association KRIOTON Ltd.
Email: shabanov@mail.rcom.ru
Russian Federation, Moscow
L. L. Kondratyuck
Gagarin State Scientific and Research Center for Cosmonaut Training
Email: shabanov@mail.rcom.ru
Russian Federation, Moscow Region, Star City
References
- Slater J. Р., Lipsitz E. С., Chen J. М., Levin Н. R., Oz М. С., Goldstein D. J., Ashton R. С. and Burkhoff D. Systolic ventricular interaction in nonnal and diseased explanted human hearts // J. Thorac. Cardiovasc. Surg. 1997. Vol. 113. № 6. P. 1091-1099.
- Fogel M. A., Weinberg P. M., Fellows K. E. and Hoffman E. A. A study in ventricular-ventricular interaction: single right ventricles compared with systemic right ventricles in a dual-chamber circulation // Circulation. 1995. Vol. 92. № 2. P. 219-230.
- Бухтияров И. В., Васнев А. В., Масленников Ю. В., Кондратюк Л. Л. Магнитокардиографические признаки функциональной гемодинамической перегрузки правого предсердия // Авиакосм, и экол. мед. 2006. Т. 40. № 2. С.13-18.
- Kass D. A., Kelly R. Р. Ventriculo-arterial coupling: Concepts, assumptions, and applications // Ann. Biomed. Eng. 1992. Vol. 20. P. 41-62.
- Kass D. A. Ventricular arterial stiffening: integrating the pathophysiology // Hypertension. 2005. Vol. 46. P. 185-193.
- Hundley W. G., Kitzman D. W., Morgan T M. et al. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance // J. Am. Coll. Cardiol. 2001. Vol. 3 8. P. 796-802.
- Chen С. H., Nakayama M., Nevo E. et al. Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly // J. Am. Coll. Cardiol. 1998. Vol. 3 2. P. 1221-1227.
- Leite-Moreira A. F., Correia-Pinto J., Gillebert T. C. Afterload induced changes in myocardial relaxation: a mechanism for diastolic dysfunction // Cardiovasc Res. 1999. Vol. 43. P. 344-353.
- Kelly R. P, Ting С. T., Yang T. M. et al. Effective arterial elastance as index of arterial vascular load in humans // Circulation. 1992. Vol. 86. P. 513-521.
- Maslennikov Yu., Slobodchikov V. The 7-channel dc-SQUID-based MCG-system for use in an unshielded environment // Proceedings of the 13th International Conference of Biomagnetism. 2002. P. 946-948.
- Примин M. А., Гуменюк-Сычевский В. И., Heдайвода И. В. Методы и алгоритмы локализации источника магнитного поля. Киев: Наук, думка, 1992. 92 с.
- Primin М., Nedayvoda I. Mathematical model and measurement algorithms for a dipole source location // Int. J. Applied Elektromagn. In. Mechanics. 1997. № 8. P. 119-131.
- Примин M. А., Недайвода И. В., Васильев В. Е. Новые алгоритмы обработки магнитокардиосигнала: многоканальный магнитокардиограф // УСиМ. 1998. № 2. С. 48-62.
Supplementary files


