Analysis of the efficiency of obtaining transmitochondrial mice by microinjection of human mitochondria into mouse zygote

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We have elaborated the conditions for transfer of human mitochondria into murine zygotes with subsequent detection of human mt-DNA at various stages of embryonic development and in organs of neonate mice. This allowed obtaining heteroplasmic transmitochondrial animals with human mt-DNA. Such animals can be a useful model for studying maternally inherited mitochondrial diseases. Statistical analysis of the efficiency of obtaining transmitochondrial mice demonstrates high probability of achieving a positive result in a study involving relatively small groups of laboratory animals.

About the authors

М. G. Bass

Institute for Experimental Medicine of the Russian Academy of Medical Sciences

Author for correspondence.
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg

V. A. Sokolova

Institute for Experimental Medicine of the Russian Academy of Medical Sciences

Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg

М. Е. Kustova

Institute for Experimental Medicine of the Russian Academy of Medical Sciences

Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg

О. V. Kidgotko

Institute for Experimental Medicine of the Russian Academy of Medical Sciences

Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg

А. V. Sorokin

Institute for Experimental Medicine of the Russian Academy of Medical Sciences

Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg

V. В. Vasilyev

Institute for Experimental Medicine of the Russian Academy of Medical Sciences

Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg

References

  1. Вуд М., Уиттингхэм Д., Ролл У. Низкотемпературная консервация яиц и эмбрионов мыши // Биология развития млекопитающих. Методы. М., 1990. С. 350-352.
  2. Гланц С. Медико-биологическая статистика. М.: Практика, 1999.
  3. Двойрин В. В., Клименков А. А. Методы контролируемых клинических испытаний. М.: Медицина, 1985.
  4. Хедерингтон К. Разведение мышей // Биология развития млекопитающих. Методы. М., 1990. С. 21-22.
  5. Anderson S., Bankier А. Т., Barrell В. G., de Bruijn М. Н., Coulson A. R., Drouin J., Ереron I. С., Nierlich D. Р., Roe В. A., Sanger F., Schreier Р. Н., Smith A. J., Staden R., Young I. G. Sequence and organization of the human mitochondrial genome // Nature. 1981. Vol. 290. P. 457-465.
  6. Bibb M. J., van Etten R. A., Wright С. T., Walberg M. W., Clayton D. A. Sequence and gene organization of mouse mitochondrial DNA // Cell. 1981. Vol. 26. P. 167-180.
  7. Ebert К. М., Alcivar A., Liem Н., Goggins R., Hecht N. В. Mouse zygotes injected with mitochondria develop normally but the exogenous mitochondria are not detectable in the progeny // Mol. Reprod. Dev. 1989. Vol. 1. P. 156-163.
  8. Inoue K., Nakada K., Ogura A., Isobe K., Goto Y., Nonaka L., Hayashi J. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes // Nature Genet. 2000. Vol. 26. P. 176-181.
  9. Irwin M. H., Johnson L. W., Pinkert C. A. Isolation and microinjection of somatic cell-derived mitochondria and germline heteroplasmy in transmitochondrial mice // Transgen. Res. 1999. Vol. 8. P. 119-123.
  10. Jenuth J. P, Peterson A. C., Fu K., Shoubridge E. A. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA // Nature Genet. 1996. Vol. 14. P. 146-151.
  11. Luft R. The development of mitochondrial medicine // Proc. Natl. Acad. Sci. USA. 1994. Vol. 91. P. 8731-8738.
  12. Marchington D. R., Barlow D., Poulton J. Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: Developing the first model of mitochondrial DNA disease // Nature Med. 1999. Vol. 5. P. 957-960.
  13. Meirelles F. V., Smith L. C. Mitochondrial genotype segregation during preimplantation development in mouse heteroplasmic embryos // Genetics. 1998. Vol. 148. P. 877-883.
  14. Nagao Y., Totsuka Y., Atomi Y., Yonekawa H., Imai H. Effect of different type of mitochondrial DNA on preimplantation embryonic development in the mouse // J. Reprod. Dev. 1998. Vol. 44. P. 129-134.
  15. Pinkert C. A., Irwin M. H, Johnson L. W., Moffatt R. J. Mitochondria transfer into mouse ova by microinjection // Transgen. Res. 1997. Vol. 6. P. 379-383.
  16. Poulton J., Marchington D. R. Prospects for DNA-based prenatal diagnosis of mitochondrial disorders // Prenatal. Diagnosis. 1996. Vol. 16. P. 1247-1256.
  17. Schon E. A., DiMauro S. Mitochondrial diseases // Karger. Gazette. 1994. № 58. P. 3.
  18. Sokolova V. A., Kustova M. E., Arbuzova N. I, Sorokin A. V., Moskaliova O. S, Bass M. G., Vasilyev V. B. Obtaining mice that carry human mitochondrial DNA transmitted to the progeny // Mol. Reprod. Devel. 2004. Vol. 68. P. 299-307.
  19. Vasilyev V. B., Sokolova V. A., Sorokin A. V., Bass M. G., Arbusova N. I, Patkin E. L., Golubkov V. I., Dyban A. P., Gaitskhoki V. S. Persistence of human mitochondrial DNA throughout the development to the blastocyst of mouse zygotes microinjected with human mitochondria // Zygote. 1999. Vol. 7. P. 279-283.
  20. Wallace D. Diseases of the mitochondrial DNA // Ann. Rev. Biochem. 1992. Vol. 61. P. 1175-1212.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2005 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.