Молекулярные аспекты рака предстательной железы как основа для новых методов и подходов в диагностике и лечении заболевания

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В настоящее время не существует точных и надежных маркеров рака предстательной железы. К недостаткам таких широко используемые в клинической практике диагностических методов, как уль­тразвуковое обследование, определение уровня PSA в крови и гистологический анализ биопсийного материала, относятся низкая чувствительность и отсутствие специфичности. Особенно это касается ранних стадий заболевания. Кроме того, нет и надежных прогностических маркеров, которые бы позволили оценить дальнейшее поведение диагностированной опухоли, а значит, выбрать наиболее эффективную тактику и стратегию в лечении пациентов с раком предстательной железы. Таким обра­зом, актуальной остается проблема поиска новых биомаркеров этого заболевания. Одним из путей решения этой проблемы является изучение молекулярных механизмов, которые лежат в основе раз­вития рака предстательной железы. В последнее десятилетие, благодаря развитию методов функцио­нальной геномики, были идентифицированы и охарактеризованы гены, вовлеченные в онкогенез и прогрессию рака предстательной железы. Среди этих генов могут оказаться гены - кандидаты на роль новых биомаркеров и генов-мишеней для терапии этого заболевания. В данном обзоре мы попы­тались представить имеющиеся на сегодняшний день данные, касающиеся молекулярных аспектов возникновения и развития рака предстательной железы

Об авторах

А. М. Гранов

ФГУ «Центральный научно-исследовательский рентгенорадиологический институт Росздрава»

Автор, ответственный за переписку.
Email: shabanov@mail.rcom.ru

академик РАМН

Россия, Санкт-Петербург

Е. И. Якубович

ФГУ «Центральный научно-исследовательский рентгенорадиологический институт Росздрава»

Email: shabanov@mail.rcom.ru
Россия, Санкт-Петербург

В. И. Евтушенко

ФГУ «Центральный научно-исследовательский рентгенорадиологический институт Росздрава»

Email: shabanov@mail.rcom.ru
Россия, Санкт-Петербург

Список литературы

  1. Князев Ю. П., Чебуркин Ю. В., Спикерманн К. и др. Профили экспрессии протеин-киназ и фосфатаз, полученные с помощью упорядоченных наборов кДНК (кДНК-эррейз ): молекулярный портрет рака предстательной железы // Мол. биол. 2003. Т. 37. № 1. С. 97-111.
  2. Мерабишвили В. М. Деятельность онкологической службы Санкт-Петербурга в 2000 г. СПб.: МИАЦ, 2001.
  3. Abdulkadir S. A., Magee J. A., Peters Т. J. et al. Conditional liss of Nkx3. 1 in adult mice induced prostatic intraepithelial neoplasia // Mol. Cell. Biol. 2002. Vol. 22. P. 1495-1503.
  4. Apahna J.. Robinson M. C., Walter N. M. et al. Bcl-2 overexpression combined with p53protein accumulation correlates with hormone-refractory prostate cancer // Br. J. Cancer. 1996. Vol. 74. P. 1258-1262.
  5. Banerjee A. G., Liu J., Yuan Y. et al. Expression of biomarkers modulating prostate cancer angio-genesis: Differential expression of annexin II in prostate carcinomas from India and USA // Mol. Cancer. 2003. Vol. 2. P. 34-46.
  6. Bhowmick N. A., Chytil A., Plieth D. et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia // Science. 2004. Vol. 303. P. 848-851.
  7. Bonkhoff H.. Remberger K. Differentiation path¬ways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model // Prostate. 1996. Vol. 28. P. 98-106.
  8. Bowen C.. Bubendorf L.. Voeller H. J. et al. Loss of NKX3. I expression in human prostate cancer correlates with tumor progression H Cancer Res. 2000. Vol. 60. P. 6111-61Тб.
  9. Calvo A., Xiao N., Kang J. et al. Alteration in Ge¬ne Expression Profiles during Prostate Cancer Progression: Functional Correlations to Tumorigenicity and Down-Regulation of Selenprotein-P in Mouse and Human Tumors II Cancer Res. 2002. Vol. 62. P. 5325-5335.
  10. Catalona IT. J., Smith D. S., Ratliff T. L. et al. Measurement prostate-specific antigen in serum as a screening test for prostate cancer // N. Engl. J. Med. 19917 Vol. P. 1156-1161.
  11. Chen H., Handi A. K, Li X., Bieberich C.J. NKX3. 1 interacts with prostate-derived Ets factor and regulates the activity of the PSA promoter // Cancer. 2002. Vol. 62. P. 338-340.
  12. Clark L., Dalkin B., Krongrad A. et al. Decreased incidence of prostate cancer with selenium supplementation: results of double-blind cancer prevention trial // Br. J. Urol. 1998. Vol. 81. P. 730-734.
  13. De Kok J., Verhaegh G., Roelofs R.. Hessels D.. Kiemeney L., Aalders T., Swinkels D., Schalken J. DD3PCA3, a very sensitive and specific marker to detect prostate tumors // Cancer Res. 2002. Vol. 62. P. 2695-2698.
  14. De Marzo A. M., Marchi К L., Epstein J. I.. Nelson IT. G. Proliferative inflammatory atrophy of the prostate: Implications for prostatic carcinogenesis // Am. J. Pathol. 1999. Vol. 155. P. 1985-1992.
  15. Dhanasekaran S. M., Barrette T. R., Ghosh D. et al. Delineation of prognostic biomarkers in prostate cancer // Nature. 2001. Vol. 412. P. 822-825.
  16. Di Cristofano A., De Acetis M., Koff A. et al. PTEN and h27KIPl cooperate in prostate cancer tumor suppression in the mouse // Nat. Genet. 2001. Vol. 27. P. 222-224.
  17. Di Cristofano A.. Pandolf P. P. The multiple roles of PTEN in tumor suppression // Cell. 2000. Vol. 100. P. 387-390.
  18. Domen J.. Gandy K. L., Weissman /. L. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation // Blood. 1998. Vol. 91. P. 2272-2282.
  19. Edwards A., Hammond H. A., Jin L. et al. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups // Genomics. 1992. Vol. 12. P. 241-253.
  20. Evans A. J. a-methylacyl CoA racemase / P504S: overview and potential uses in diagnostic pathology as applied to prostate needle biopsies II J. Clin. Pathol. 2003. Vol. 56. P. 892-897.
  21. 2\. Fielding J., Bist A., Fielding P. E. Caveolin mRNA levels are up-regulateed by free cholesterol and down-regulated by oxysterols in fibroblast monolayers // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. P. 3753-3758.
  22. Gann P. H, Hennekens С. H., Sacks F. M. et al. Prospective study of plasma fatty acids and risk of prostate cancer // J. Natl. Cancer. Inst. 1994. Vol. 86. P. 281-286.
  23. Garnick M. B. Prostate Cancer. Screening. Diagnosis, and Management // Ann. I nt. Med. 1993. Vol. 118. P. 804-818.
  24. Gray I. C., Stewart L. M., Phillips S. M. et al. Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN // Br. J. Cancer. 1998. Vol. 78. P. 1296-1300.
  25. Green J., Shibata M., Shibata E. et al. 2-Difluo-romethylornithine and dehydropiandrosterone inhibit mammary tumor progression but not mammary or prostate tumor initiation in C3(l)SV40T/t-antigen transgenic mice // Cancer Res. 2001. Vol. 61. P. 7449-7455.
  26. GsurA., Feik E., Madersbacher S. Genetic polymorphisms and prostate cancer risk I/ World J. Urol. 2004. Vol. 21. P. 414^23.
  27. Gupta S., Adhami IIS., Subbarayan M. et al. Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model II Cancer Res. 2004. Vol. 64. P. 3334-3343.
  28. Gupta S., Ahmad N., Marengo S. R. et al. 11. Chemoprevention of prostate carcinogenesis by alfa-difluoromethylornithine in TRAMP mice // Cancer Res. 2000* Vol. 60. P. 5125-5133.
  29. Gupta S., Srivastava M., Ahmad N et al. Lipo.w - genase-5 is overexpressed in prostate adenocarcinoma//Cancer. 2001. Vol. 91. P. 737-743.
  30. Harrison D. E., Lerner С. P. Most primitive hematopoietic stem cells are stimulated to cycle rapidly after treatment with 5-fIuorouracil // Blood. 1991. Vol. 78. P. 1237-1240.
  31. Hudson D. L. Epithelial stem cells in human prostate growth and disease I/ Prostate Cancer and Prostate diseases. 2004. Vol. 7. P. 188-194.
  32. Isaacs J. T. Control of cell proliferation and cell death in the normal and neoplastic prostate: a stem cell model // Benign Prostatic Hyperplasia / Ed. С. H. Rogers, D. S. Coffey, G. Cunha, J. T. Grayhack, F. Jr. Hinman and R. Horton, M. D. Bethasda // NIH. 1987. Vol. 2. P. 85-94.
  33. Hang Z., Tretiakova M., Steinberg G. et al. Overexpression of a-methylacyl CoA racemase / P504S in recurrent prostatic adenocarcinoma after radiation I/ Mod. Pathol. 2003. Vol. 16. P. 155A.
  34. Kelavkar U. P, Nixon J. B., Cohen C. et al. Overexpression of 15-lipoxygenase-l in PC-3 human prostate cancer cells increases tumo- rigenesis II Carcinogenesis. 2001. Vol. 22. P. 1765-1773.
  35. Khan J., Wei J. S., Ringner M. et al. Clasification and diagnostic prediction of cancer, using gene expression profiling and artifical neural networks //Nat. Med. 2001. Vol. 7. P. 673-679.
  36. Kibel A. S. Faith D. A., Bova G. S., Isaacs W. B. Loss of heterozygosity at I2pl2-13 in primary and metastatic prostate adenocarcinoma // J. Urol. 2000. Vol. 164. P. 192-196.
  37. Kim M. J., Cardiff R. D., Desai N. et al. Cooperativity of Nkx3. 1 and Pten loss of function in a mouse model of prostate carcinogenesis // Proc. Natl. Acad. Sci. 2002. Vol. 99. P. 2884-2889.
  38. Kinzler K. W., Vogelstein B. Cancer-susceptibility genes: gatekeepers and caretakers // Nature. 1997. Vol. 3 86. P. 761-763.
  39. Kosary C. L., Reis L. A. G., Miller B. A. et al. SEER Cancer Statistics Review, 1973-1992: Tables and Graphs / National Cancer Institute. NIH Pub. No. 96-2789. Bethesda, MD. 1995.
  40. LinX, Tascilar M., Lee W. H. et al. GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells // Am. J. Pathol. 2001. Vol. 159. P. 1815-1826.
  41. Lin Y. Uemura H., Fujinami K., Hosaka M. et al. Telomerase activity in primary prostate cancer H J. Urol. 1997. Vol. 157. P. 1161-1165.
  42. Luo J., Zha S., Gage W. R. et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer // Cancer Res. 2002. Vol. 62. P. 2220-2226.
  43. Machtens S., Serth J., Bokemeyer C. et al. Expression of the p53 and Maspin protein in primary prostate cancer: corelation with clinical features II Int. J. Cancer. 2001. Vol. 20. P. 337-342.
  44. McEleny K. R., Watson R. W., Coffey R. N. et al. Inhibitors of apoptosis proteins in prostate cancer cell lines H Prostate. 2002. Vol. 51. P. 133-140.
  45. Meehan K. L., Holland J. W, Dawkins H. J. Proteomic analysis of normal and malignant prostate tissue to identify novel protein lost in cancer // Prostate. 2002. Vol. 50. P. 54-56.
  46. Meid F. H., Gygi С. M., Leisinger H. J. et al. The use of telomerase activity for the detection of prostatic cancer cells after prostatic massage // J. Urol. 2001. Vol. 165. P. 1802-1805.
  47. Miller .J. C., Zhou H.. Kweke J. et al. Antibody microarray profiling of human prostate cancer sera: Antibody screening and identification of potential biomarkers // Proteomics. 2003. Vol. 3. P. 56-63.
  48. Mochizuki H., Matsubara A., Teishima J. et al. Interaction of ligand-receptor system between stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: a possible predictor of metastasis // Biochem. Biophys. Res. Commun. 2004. Vol. 320. P. 656-663.
  49. Moos P. J., Edes K., Cassidy P. et al. Electrophilic prostaglandins and lipid aldehydes repress redox-sensitive transcription factors p53 and hypoxiainducible factor by impairing the selenoprotein thioredoxin reductase // J. Biol. Chern. 2003. Vol. 278. P. 745-750.
  50. Moschos M. P. Selenprotein P II Cell. Mol. Life Sci. 2000. Vol. 57. P. 1836-1845.
  51. Mouraviev V., Li L., Tahir S. A. et al. The role of caveolin-1 in androgen insensitive prostate cancer//J. Urol. 2002. Vol. 168. P. 1589-1596.
  52. Nakamura N., Ramaswamy S., Vazquez F. et al. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN // Mol. Cell. Biol. 2000. Vol. 20. P. 8969-8982.
  53. Nam R. K., Toi A., Vesprini D. et al. V89L polymorphism of type-2, 5-alpha reductase enzyme gene predicts prostate cancer and progression // Urology. 2001. Vol. 57. P. 199-204.
  54. Nasu Y, Timme T, Yang G. et al. Suppression of caveolin expression induced androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells II Nat. Med. 1998. Vol. 4. P. 1062-1064.
  55. Nazareth L. V., Weigel N. L. Activation of the human androgen receptor through a protein kinase A signaling pathway // J. Biol. Chern. 1996. Vol. 271. P. 19900-19907.
  56. Nelson W., De Marzo A., Isaacs B. Prostate Can¬cer. Mechanisms of disease // N. Engl. J. Med. 2003. Vol. 49. P. 366-381.
  57. Nemeth J. A., Sensibar J. A.. White R. R. et al. Prostatic ductal system in rats: tissue-specific expression and regional variation in stromal distribution of transforming growth factor-beta 1 // Prostate. 1997. Vol. 33. P. 64-71.
  58. Platt N., Gordon S. Is the class A macrophage scavenger receptor (SR-A) multifunctional? The mouse's tale H J. Clin. Invest. 2001. Vol. 108. P. 649-654.
  59. Primo N., Lara Jr., Kung H. J. et al. Molecular biology' of prostate carcinogenesis // Crit. Rev. Oncol. / Hematol. 1999. VoL 32. P. 197-208.
  60. Ramaswamy S., Nakamura N., Vazquez F. et al. Regulation of progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway H Proc. Natl. Acad. Sci. USA. 1999. Vol. 96. P. 2110-2115.
  61. Rhodes D. R., Sanda M. G.. Otte A. P. et al. Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer H J. Natl. Cancer Inst. 2003. Vol. 95. P. 661-668.
  62. Sakr IV. A., Grignon D. J., Crissman J. D. et al. High grade prostatic intraepithelial neoplasia (HGIP) and prostatic adenocarcinima between the ages of 20-69: an autopsy study of 249 cases // In. Vivo. 1994. Vol. 8. P. 439^143.
  63. Shariat S. E, Andrews B., Kalian M. IV. et al. Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis // Urology. 2001. Vol. 58. P. 1008-1015.
  64. Simard J., Dumont M., Labuda D. et al. Prostate cancer susceptibility genes: lessons learned and challenges posed // Endocr. Relat. Cancer. 2003. Vol. 10. P. 225-259.
  65. Smith M. M., Levitan D. J. The Caenorhabditis elegans homolog of the putative prostate cancer susceptibility gene ELAC2, hoe-1, plays a role in germline proliferation // Dev. Biol. 2004. Vol. 266. P. 151-160.
  66. Stuart G. R., Holcroft J., de Boer J. G., Glickman B. W. Prostate mutation in rats indused by the suspected human 2-am ino-1-methyl-6-phenilimidazo(4.5-b)pyridine // Cancer Res. 2000. Vol. 60. P. 266-268.
  67. Tahir S. A., Ren C., Timme T. L. et al. Develop¬ment of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer // Clin. Cancer Res. 2003. Vol. 9. P. 3653-3659.
  68. Takaku H., Minagawa A., Takagi M., Nashimo¬to M. A candidate prostate cancer susceptibility gene encodes tRNA 3' processing endoribonu¬clease // Nucleic. Acids. Res. 2003. Vol. 31. P. 2272-2278.
  69. Tavigian S. V.. Simard J., Teng D. H. E et al. A candidate prostate cancer susceptibility gene at chromosome 17p // Nat. Genet. 2001. Vol. 27. P. 172-180.
  70. Umbas R.. Isaacs W.. Bringuier P. et al. E-Cadherin Expression is associated with poor prognosis in patients with prostate cancer // Cancer Res. 1994. Vol. 4. P. 3929-3933.
  71. Uzgare A., Xu Y., Isaacs J. T. In vitro cultering and characteristics of transit amplifying epithelial cells from human prostate tissue // J. Cell. Biochem. 2004. Vol. 91. P. 196-205.
  72. Visakorpi T, Hyytinen E., Koivisto P. et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer II Cancer Res. 1997. Vol. 57. P. 314-319.
  73. Whittermore A. S., Kolonel L. N., Wu A. H. et al. Prostate cancer in relation to diet, physical activity, and body size in blacks, whites, and Asians in the United States and Canada H J. Natl. Cancer. Inst. 1995. Vol. 87. P. 652-661.
  74. Witte J. S., Suarez В. K., Thiel B. et al. Genomewide scan of brothers: replication and fine mapping of prostate cancer susceptibility and aggressiveness loci H Prostate. 2003. Vol. 56. P. 298-308.
  75. Xu J., SlolkJ. A.. Zhang X. et al. Identification of differentially expressed genes in human prostate cancer using subtraction and microarray // Cancer Res. 2000. Vol. 60. P. 1667-1682.
  76. Yang R. M., Naitoh J., Murphy M. et al. Low p27 expression predicts poor disease-free survival in patients with prostate cancer // J. Urol. 1998. Vol. 159. P. 941-945.
  77. Zhang M.. Magit D., Sager R. Expression of maspin in prostate cells is regulated by a positive Ets element and a negative hormonal responsive element site recognized by androgen receptor // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. P. 5673-5678.
  78. Zhou A., Hassel B. A., Silverman R. H. Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action // Cell. 1993. Vol. 72. P. 753-765.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2006



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.