Gender difference in methylation of 5’-region of DUSP9 in clear-cell carcinoma of kidney
- Authors: Granov A.М.1, Yakubovich Е.I.1, Lavnikevich D.М.1, Evtushenko V.I.1
-
Affiliations:
- Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health and Social Development
- Issue: Vol 8, No 3 (2008)
- Pages: 55-61
- Section: Clinical medicine
- Published: 20.10.2008
- URL: https://journals.eco-vector.com/MAJ/article/view/693934
- ID: 693934
Cite item
Abstract
The DUSP9 gene, located on chromosome Xq28, encodes a dual specificity protein phosphatase MKP-4. A recent study could indicate a tumor suppression function of this phosphatase. Previously, we have shown the down-regulation of DUSP9 expression in renal clear cell carcinomas, but the mechanism of DUSP9 silencing is unclear. It is known that aberrant promoter hypermethylation of tumor suppressor genes occurs frequently during the pathogenesis of human cancer. In this study we explored whether the methylation of DUSP9 CpG sites is associated with loss of DUSP9 expression. Using combined bisulfite restriction analysis (COBRA) we compared methyation status of 5' region of DUSP9 in 27 paired tissue samples obtained from primary kidney tumors and corresponding normal tissues (18 samples were from male and 9 samples were from female patients). We have found the gender difference tn methylation of 5' region of DUSP9 in renal tumors.The increased methylation in tumor samples compared to paired normal samples were detected in 58% of the female patients (8/9), whereas all 18 male patients samples had unmethylated DNA status. Our results suggest that methylation of DUSP9 CpC sites may be associated with the loss of expression of this gene in kidney cancer cells. However, since the methylation frequency was low in male patients we concluded that the epigenetic silencing of DUSP9 by DNA methylation is not common and other mechanisms could be responsible for the loss of the expression of this gene in primary clear cell renal tumors.
Keywords
About the authors
A. М. Granov
Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health and Social Development
Author for correspondence.
Email: shabanov@mail.rcom.ru
академик РАМН
Russian Federation, St. PetersburgЕ. I. Yakubovich
Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health and Social Development
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg
D. М. Lavnikevich
Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health and Social Development
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg
V. I. Evtushenko
Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health and Social Development
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg
References
- Гранов А. М.. Якубович Е. И.. Евтушенко В. И. Множественный параллельный анализ экспрессии генов как инструмент молекулярной диагностики рака почки и предстательной железы // Мед. акад, журн. 2006. Т. 6. № 1. С. 131-138.
- Чебуркин Ю В.. Князева Т. Г. Петер Ш. и др. Молекулярный портрет карцином почки человека, полученный на основе экспрессии протеи н-тирозинкиназ и тирозин-фосфатаз, контролирующих передачу регуляторных сигналов в клетках И Мол. биол. 2002. Т. 36. № 3. С. 480-490.
- Carrel L.. Willard Н. X-inactivation profile reveals extensive variability in X-linked gene expression in females // Nature. 2005. Vol. 434. P. 400-404.
- Chang P, Tsau Y. K.. Tsai W. Y. et al. Renal malformations in children with Turner’s syndrome H J. Formos Med. Assoc. 2000. Vol. 99. P. 796-798.
- Chen Y. J., Vortmeyer A., Zhuang Z. et al. X-chromosome loss of heterozygosity frequently occurs in gastrinomas and is correlated with aggressive tumor growth //Cancer. 2004. Vol. 100. P. 1379-1387.
- Christie G., Williams D., Mac-Isaac F. et al. The dual-specifity protein phosphatase DUSP9/MKP4 is essential for placental function but not required for normal embryonic development // Mol. and Cell Biol. 2005. Vol. 25. P. 8323-8333.
- Costa V. L.. Henrique R.. Ribeiro F. R. et al. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors H BMC Cance. 2007. Vol. 7. P. 133.
- Costello J. and Pl ass C. Methylation matters // J. Med. Genet. 2001. Vol. 38. P. 285-303.
- D'Alessio A. C.. Szyf M. Epigenetic tete-a-tete: the bilateral relationship between chromatin modifications and DNA methylation // Biochem. Cell Biol. 2006. Vol. 84. P. 463-476.
- Dahl E., Wiesmann F, Woenckhaus M. et al. Frequent loss ofSFRPl expression in multiple human solid tumours: association with aberrant promoter methylation in renal cell carcinoma // Oncogene. 2007. Vol. 26. P. 5680-5691.
- Dulaimi E., Ibanez de Caceres I.. Uzzo R. G. et al. Promoter hypermethylation profile of kidney cancer // Clin. Cancer Res. 2004. Vol. 10. P. 3972-3979.
- Frommer M., McDonald L. E., Millar D. S. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands // Proc. Natl. Acad. Sci. USA. 1992. Vol. 89. P. 1827-1831.
- Heard E., Disteche Ch. Dosage compensation in mammals: fine-tuning the expression of the X chromosome //Genes & Dev. 2006. Vol. 20. P. 1848-1867.
- Hirota E., Yan L.. Tsunoda T, Ashida Sh. et al. Genome-wide gene expression profiles of clear cell renal cell carcinoma: Identification of molecular targets for treatment of renal cell carcinoma // Int. J. Oncol. 2006. Vol. 29. P. 799-827.
- Hoque M. O.. Begum S.. Topaloglu O. et al. Quantitative detection of promoter hypcrmethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer II Cancer Res. 2004. Vol. 64. P. 5511-5517.
- http://www. americanchemistry.com/s_acc/docs/LRI- Abstracts/LRIAbstract_34.pdf
- Ibanez de Caceres I.. Dulaimi E.. Hoffman A. M. et al. Identification of novel target genes by an epigenetic reactivation screen of renal cancer // Cancer Res. 2006. Vol. 66. P. 5021-5028.
- Illingworth R.. Kerr A., DeSousa D. et al. A Novel CpG Island Set Identifies Tissue-Specific Methylation at Developmental Gene Loci // PLoS Biol. 2008. Vol. 6(1): e22.
- Jaenisch R.. Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals // Nat. Genet. 2003. Vol. 33. P. 245-254.
- Knudson A. G. Mutation and cancer: statistical study of retinoblastoma // Proc. Natl. Acad. Sci. USA. 1971. Vol. 68. P. 820-823
- Kolb-Kokocinski A., Mehrle A.. Bechtel S. et al. The systematic functional characterisation of Xq28 genes prioritises candidate disease genes // BMC Genomics. 2006. Vol. 7. P. 29.
- Liu Y. Lagowski J.. Sundholm A. et al. Microtubule disruption and tumor suppression by mitogen-activated protein kinase phosphatase 4 // Cancer Res. 2007. Vol. 67. P. 10711-10719.
- Matthies F, Macdiarmid W. D.. Rallison M. L., Tyler F. H. Renal anomalies in Turner’s syndrome. Types and suggested embryogenesis//Clin. Pediatrics. 1971. Vol. 10. P. 561-565.
- Muda M.. Boschert U., Smith A. et al. Molecular clon¬ing and functional characterization of a novel mitogen activated protein kinase phosphatase, MKP-4 // J. Biol. Chern. 1997. Vol. 272. P. 5141-5151.
- Niranjan И, Mahmood R., Kalaivani A. and Sudha S. Study of cancer genes in X-chromosonte // J. of Theoretical and Applied Information Technology. 2008. P. 31-54.
- Piao Z., Malkhosyan S. R. Frequent loss Xq25 on the inactive X chromosome in primary breast carcinomas is associated with tumor grade and axillaty lymph node metastasis H Genes Chromosomes Cancer. 2002. Vol. 33. P. 262-269.
- Reik W. Dean W. Walter J. Epigenetic reprogramming in mammalian development // Science. 2001. Vol. 293. P. 1089-1093.
- Rivera M., Kim W. J., Wells J. et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor // Science. 2007. Vol. 315. P. 642-645.
- Robertson K. D. and WolffeA. P. DNA methylation in health and disease // Nat. Rev. Genet. 2000. P. 11-19.
- Sambrook J., Fritsch E. E and Maniatis T. Molecular cloning: A laboratory manual. NY: Cold Spring Harbor Laboratory Press, 1989. Vol. 1, 2, 3.
- Shen L., Guo Yi., Chen X. et al. Optimizing annealing temperature overcomes bias in bisulfite PCR methylation analysis II BioTechniques. 2007. Vol. 42. P. 48-52.
- To К. K., Zhan Z.. Bates S. Aberrant promoter methylation of the ABCG2 gene in renal carcinoma // Mol. Cell Biol. 2006. Vol. 26. P. 8572-8585.
- Ushijima T. Epigenetic field for cancerization // J. Biochem. and Mol. Biol. 2007. Vol. 40. № 2. P. 142-150.
- Wiencke J. K., Zheng Sh., Lafuente A. et al. Aberrant Methylation of pl6INK4a in Anatomic and Gender-specific Subtypes of Sporadic Colorectal Cancer // Cancer Epidemiology, Biomarkers & Prevention. 1999. Vol. 8. P. 501-506.
- Xiong Z., Laird P. W. COBRA: a sensitive and quantitative DNA methylation assay H Nucleic Acids Res. Vol. 25. P. 2532-2534.
- Yuasa Y., Nagasaki H., Akiyama Y. et al. Relationship between CDX2 gene methylation and dietary factors in gastric cancer patients H Carcinogenesis. 2005. Vol. 26. P. 193-200.
Supplementary files


