On the history of the study of endogenous antibiotics

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review presents data on the history of the discovery of the first endogenous antibiotic compounds, on the contribution of Russian scientists, in particular, researchers from the Institute of Experimental Medicine (St. Petersburg), in the study of the structural and functional properties of antimicrobial proteins and peptides – important molecular factors of innate immunity that can act as an alternative to conventional antibiotics in the fight to control pathogenic microorganisms.

Full Text

Restricted Access

About the authors

Galina M. Aleshina

Institute of Experimental Medicine

Author for correspondence.
Email: aleshina.gm@iemspb.ru
ORCID iD: 0000-0003-2886-7389
SPIN-code: 4479-0630

Dr. Sci. (Biol.), Associate Professor, Head of the Laboratory of General Pathology of the Department of General Pathology and Pathological Physiology

Russian Federation, Saint Petersburg

References

  1. von Behring EA, Kitasato S. Ueber das Zustandekommen der Diphtherie–Immunität and der Tetanus-Immunitat bei Thieren. Dtsch Med Wochenschr. 1890;16(49):1113–1114. (In German). doi: 10.1055/s-0029-1207589
  2. Fodor J. Die Fähigkeit des Blutes Bakterien zu vernichten. Dtsch Med Wochenschr. 1887;13(34):745–747. (In German) doi: 10.1055/s-0029-1197913
  3. von Behring Е. Über die Ursache der Immunität von Ratten gegen Milzbrand. Centralblatt für klinische Medicin. 1888;38:681–690. (In German). doi: 10.17192/eb2013.0160
  4. Pirenne Y. Recherches sur les alexines et les substances microbicides du sérum normal. Centr f Bakteriol Parasitenk. 1904;36:256–266. (In French)
  5. Pettersson А. Über die warmebestandigen keimtötenden Substanzen, die beta-Lysine der Tiersera und die von diesen beeinflüssten Bakterien. Z Immunitatsforsch. 1926;48:233–296. (In German)
  6. Donaldson DM, Tew JG. Beta-Lysin of platelet origin. Bacteriol Rev. 1977;41(2):501–513. doi: 10.1128/br.41.2.501-513.1977
  7. Yeaman MR. Platelets in defense against bacterial pathogens. Cell Mol Life Sci. 2010;67(4):525–544. doi: 10.1007/s00018-009-0210-4
  8. Nuttall G. Experiments über die bacterienfeindlichen Einflüsse des thierischen Körpers. Z Hyg Infektionskrankh. 1888;4:353–394. (In German)
  9. Buchner Н. Zur Nomenklatur der schützenden Eiweisskörper. Centr f Bakteriol Parasitenk. 1891;10(21):699–701. (In German)
  10. Ehrlich Р. Collected studies оn immunity. Chap. 2. Translated bу С. Bolduan. New York: J. Wiley & sons, 1906.
  11. Gordon J, Wormall A. The relationship between the bactericidal power of normal guinea pig serum and complement activity. J Pathol Bacteriol. 2005;31(4):753–768. doi: 10.1002/path.1700310417
  12. Metchnikoff E. Nevospriimchivost’ v infektsionnykh zabolevaniyakh. Saint Petersburg: K.L. Rikker; 1903. (In Russ.)
  13. Buchner Н. Neuere Fortschritte in der Immunitätsfrage. Münch med Wochschr. 1894;41:497–500. (In German)
  14. Denys J, Нavet J. Sur la part des leucocytes dans le pouvoir bactericide du sang de chien. La cellule. 1894;10:7–35. (In French)
  15. Hahn М. Über die Beziehungen der Leucocyten zur bactericiden Wirkung des Blutes. Arch Hyg. 1895;25:105–144. (In German)
  16. Mechnikov Е. Immunity in infective diseases. Chap. VI, VII. Translated bу F.G. Вinnie. London: Cambridge University Press; 1907.
  17. Hankin ЕН. А bacteria-killing globulin. Proc R Soc Lond. 1891;48(292–295):93–101. doi: 10.1098/rspl.1890.0013
  18. Pettersson A. Über die bacterizeden leukocytens Stoffe und ihre Beziehungen. Immunitat und Bacteriol Parasitink. 1905;139:423–437. (In German)
  19. Schneider R. Die bakterizide und hämolytische Wirkung der tierischen Gewebsflüssigkeiten und ihre Beziehungen zu den Leukozyten. Arch Hyg. 1909;70:40–162. (In German)
  20. Hirsch JG. Phagocytin: А bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 1956;103(5):589–611. doi: 10.1084/jem.103.5.589
  21. Fleming A. On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc Lond B. 1922;93(653):306–317. doi: 10.1098/rspb.1922.0023
  22. Thompson R. Lysozyme and the antibacterial properties of tears. Arch Ophthalmol. 1941;25(3):491–509. doi: 10.1001/archopht.1941.00870090115014
  23. Bloom WL, Watson DW, Cromartie WJ, et al. Studies on infection with Bacillus anthracis. IV. Preparation and characterization of an anthracidal substance from various animal tissues. J Infect Dis. 1947;80(1):41–52. doi: 10.1093/infdis/80.1.41
  24. Weissman N, Graf LH. Studies on infection with Bacillus anthracis. VII. А comparison of the antibacterial effects of calf thymus histone and а quaternary ammonium cationic detergent on В. anthracis. J Infect Dis. 1947;80(2):145–153. doi: 10.1093/infdis/80.2.145
  25. Dubos RJ, Hirsch JG. The antimycobacterial activity of а peptide preparation derived from calf thymus. J Exp Med. 1954;99(1):55–63. doi: 10.1084/jem.99.1.55
  26. Skarnes RС, Watson DW. Characterization of an antibacterial peptide from calf thymus. Proc Soc Exp Biol Med. 1956;93(2):267–269. doi: 10.3181/00379727-93-22728
  27. Kossel А. Über die bäsichen Stoffe des Zellkerns. Biological Chemistry. 1897;22(2):176–187. (In German). doi: 10.1515/bchm2.1897.22.2.176
  28. Few АV, Schulman JН. The absorption of polymyxin Е bу bacteria and bacterial cell walls and its bactericidal action. J Gen Microbiol. 1953;9(3):454–466. doi: 10.1099/00221287-9-3-454
  29. Powers JP, Hancock RE. The relationship between peptide structure and antibacterial activity. Peptides. 2003;24(11):1681–1691. doi: 10.1016/j.peptides.2003.08.023
  30. Zeya HI, Spitznagel JK. Antibacterial and enzymatic basic protein from leukocyte lysosomes: separation and identification. Science. 1963;142(3595):1085–1087. doi: 10.1126/science.142.3595.1085
  31. Spitznagel JK, Chi H-J. Cationic proteins and antibacterial properties of infected tissues and leukocytes. Am J Pathol. 1963;43(4):697–711.
  32. Selsted ME, Szklarek D, Lehrer RI. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun. 1984;45(1):150–154. doi: 10.1128/iai.45.1.150-154.1984
  33. Selsted ME, Brown DM, DeLange RJ, et al. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem. 1985;260(8):4579–4584.
  34. Ganz T, Selsted ME, Szklarek D, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985;76(4):1427–1435. doi: 10.1172/jci112120
  35. Selsted ME, Harwig SS, Ganz T, et al. Primary structures of three human neutrophil defensins. J Clin Invest. 1985;76(4):1436–1439. doi: 10.1172/jci112121
  36. Selsted ME, Tang YQ, Morris WL, et al. Purification, primary structures, and antibacterial activities of β-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem. 1993;268(9):6641–6648.
  37. Lambert J, Keppi E, Dimarcq JL, et al. Insect immunity: isolation from immune hemolymph of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence similarity to rabbit lung macrophages bacterial peptides. Proc Natl Acad Sci USA. 1989;86(1):262–266. doi: 10.1073/pnas.86.1.262
  38. Lehrer RI, Ganz T. Endogenous vertebrate antibiotics. Defensins, protegrins, and other cysteine-rich antimicrobial peptides. Ann N Y Acad Sci. 1996;797:228–239. doi: 10.1111/j.1749-6632.1996.tb52963.x
  39. Lehrer RI, Lichtenstein AK, Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol. 1993;11:105–128. doi: 10.1146/annurev.iy.11.040193.000541
  40. Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425
  41. Hoffmann JA. The immune response of Drosophila. Nature. 2003;426(6962):33–38. doi: 10.1038/nature02021
  42. Hancock RE. Peptide antibiotics. Lancet. 1997;349(9049): 418–422. doi: 10.1016/S0140-6736(97)80051-7
  43. Ashmarin IP, Zhdan-Pushkina SM, Kokryakov VN, et al. Antibacterial and antiviral functions of the main proteins of the cell and perspective for their practical use. Biology Bulletin of the Academy of Sciences of the USSR. 1972;4:502–508. (In Russ.)
  44. Tolybekov AS, Pigarevskii VE, Ashmarin IP, Kokryakov VN. Role of leukocyte breakdown products in increasing the resistance of macrophages to ornithosis virus. Bulletin of Experimental Biology and Medicine. 1976;81(5):729–732. doi: 10.1007/BF00797146
  45. Harwig SSL, Swiderek KM, Kokryakov VN, et al. Gallinacins: cystine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett. 1994;342(3):281–285. doi: 10.1016/0014-5793(94)80517-2
  46. Stegemann C, Kolobov A, Leonova YF, et al. Isolation, purification and de novo sequencing of TBD-1, the first beta-defensin from leukocytes of reptiles. Proteomics. 2009;9(5):1364–1373. doi: 10.1002/pmic.200800569
  47. Kokryakov VN, Harwig SSL, Panyutich EA, et al. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993;327(2):231–236. doi: 10.1016/0014-5793(93)80175-t
  48. Harwig SSL, Kokryakov VN, Swiderek KM, et al. Prophenin-1, an exeptionally proline-rich antimicrobial peptide from porcine leukocytes. FEBS Lett. 1995;362(1):65–69. doi: 10.1016/0014-5793(95)00210-z
  49. Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995;374(1):1–5. doi: 10.1016/0014-5793(95)01050-o
  50. Shamova OV, Brogden KA, Zhao C, et al. Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect Immun. 1999;67(8):4106–4111. doi: 10.1128/iai.67.8.4106-4111.1999
  51. Shamova OV, Orlov DS, Balandin SV, et al. Acipensins – novel antimicrobial peptides from leukocytes of the Russian sturgeon Acipenser gueldenstaedtii. Acta Naturae. 2014;6(4):99–109. doi: 10.32607/20758251-2014-6-4-99-109
  52. Ovchinnikova TV, Balandin SV, Aleshina GM, et al. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Commun. 2006;348(2):514–523. doi: 10.1016/j.bbrc.2006.0527.078
  53. Tsvetkova EV, Leonova LE, Aleshina GM, et al. Antimicrobial effects of α-defensins from leukocytes of the hamadryas baboon Papio hamadryas. Journal of Evolutionary Biochemistry and Physiology. 2016;52(2):133–140. doi: 10.1134/S0022093016020046
  54. Leonova LE, Kokryakov VN, Aleshina GM, et al. Circular minidefensins and posttranslational generation of molecular diversity. Journal of Leukocyte Biology. 2001;70:461–464. doi: 10.1189/jlb.70.3.461
  55. Stegemann C, Tsvetkova EV, Aleshina GM, et al. De novo sequencing of two new cyclic theta-defensins from baboon (Papio hamadryas) leukocytes by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(5):599–604. doi: 10.1002/rcm.4424
  56. Ovchinnikova TV, Aleshina GM, Balandin SV, et al. Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett. 2004;577:209–214. doi: 10.1016/j.febslet.2004.10.012
  57. Zharkova MS, Kopeykin PM, Afinogenov GE, et al. Effects of proline-rich peptides of the innate immune system on drug-resistant bacterial strains. Medical Immunology (Russia). 2018;20(1):107–111. (In Russ.). doi: 10.15789/1563-0625-2018-1-107-114
  58. Zharkova MS, Orlov DS, Shamova OV, et al. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics – a novel way to combat antibiotic resistance? Front Cell Infect Microbiol. 2019;9:128. doi: 10.3389/fcimb.2019.00128
  59. Kopeikin PM, Zharkova MS, Sukhareva MS, et al. Caprine bactenecins as promising tools for developing new antimicrobial and antitumor drugs. Front Cell Infect Microbiol. 2020;10:552905. doi: 10.3389/fcimb.2020.552905

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Aleshina G.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies