The effect of the composition of leuzea and cranberry meal extracts on testosterone level in mice

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Current research suggests the potential use of natural components as sources of anabolic compounds. One of these is a new composition of leuzea and cranberry meal extracts, which, as was found earlier, exhibits a dose-dependent anabolic effect.

AIM: To establish the supposed mechanism of the anabolic effect in the composition of leuzea and cranberry meal extracts.

MATERIALS AND METHODS: In the experiment, CD-1 mice of both sexes weighing 20–25 g were used. All animals were measured blood testosterone concentration in dynamics: 0 point (before the administration of the analyzed compositions), 30, 60, 120, 180 minutes after administration.

RESULTS: After a single administration of the composition of leuzea and cranberry meal extracts at a dose of 70+500 mg/kg, the level of testosterone in the blood mice of both sexes increases, and the increase in testosterone levels in females is less pronounced than in males.

CONCLUSIONS: One of the supposed mechanisms of the anabolic effect in the composition, characterized by an increase in blood testosterone levels, has been established.

Full Text

Restricted Access

About the authors

Daria A. Khalikova

Vorozhtzov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science

Email: dasha.halikova@mail.ru
ORCID iD: 0000-0002-3932-2491

Postgraduate at the Laboratory of Pharmacological Research

Russian Federation, 9, Academician Lavrentiev Ave., Novosibirsk, 630090

Sergey V. Ankov

Vorozhtzov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science

Email: sergey.ankov42@gmail.com
ORCID iD: 0000-0001-5588-8420

Cand. Sci. (Biol.), Research Associate of the Laboratory of Pharmacological Research

Russian Federation, 9, Academician Lavrentiev Ave., Novosibirsk, 630090

Julia V. Meshkova

Vorozhtzov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science

Author for correspondence.
Email: meshkova_29@mail.ru
ORCID iD: 0000-0002-5935-2540

Junior Researcher of the Laboratory of Pharmacological Research

Russian Federation, 9, Academician Lavrentiev Ave., Novosibirsk, 630090

Tatiana G. Tolstikova

Vorozhtzov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science

Email: tg_tolstikova@mail.ru
ORCID iD: 0000-0002-3750-2958

Dr. Sci. (Biol.), Professor, Head of the Laboratory of Pharmacological Research

Russian Federation, 9, Academician Lavrentiev Ave., Novosibirsk, 630090

References

  1. Glybochko PV, Alyaev YuG. Urologiya: textbook. 3rd ed. Moscow: GEHOTAR-Media; 2014. (In Russ.)
  2. Efremov EA, Shekhovtsov SYu, Butov AO, et al. Physiological effects of testosterone: a modern view. Experimental and Clinical Urology. 2017;(3):64–69. (In Russ.)
  3. Afshari M, Malayeri AR, Mohammadshahi M. Effects of Eryngium caucasicum extract on testosterone, inflammation and oxidative status of nicotinamide-streptozotocin induced Type-2 diabetes in male rats. Journal of Contemporary Medical Sciences. 2019;5(2):77–81. doi: 10.22317/jcms.v5i2.568
  4. Bakhtyukov AA, Derkach KV, Shpakov AO. The relationship between an androgen deficiency and a decrease of the sensitivityof testicular adenylyl cyclase to gonadotropines in rats with streptozotocin diabetes of varying severity. Russian Journal of Physiology. 2019;105(1):100–110. (In Russ.). doi: 10.1134/S0869813919010011
  5. Obisike UA, Nwachuku EO, Boisa N, Nduka N. Determination of exogenous testosterone propionate dose for induction of benign prostatic hyperplasia in rat model. European Journal of Biomedical Pharmaceutical Sciences. 2019;6(13):141–147.
  6. Celec P, Ostatníkova D, Hodosy J. On the effects of testosterone on brain behavioral functions. Front Neurosci. 2015;9:12. doi: 10.3389/fnins.2015.00012
  7. Basaria S, Dobs AS. Hypogonadism and androgen replacement therapy in elderly men. Am J Med. 2001;110(7):563–572. doi: 10.1016/S0002-9343(01)00663-5
  8. Kraemer WJ, Ratamess NA, Nindl BC. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J Appl Physiol. (1985). 2017;122(3):549–558. doi: 10.1152/japplphysiol.00599.2016
  9. Wood RI, Stanton SJ. Testosterone and sport: current perspectives. Horm Behav. 2012;61(1):147–155. doi: 10.1016/j.yhbeh.2011.09.010
  10. Gunina L. Аnabolic agents in sport: mechanism of doping action and side effects. Science in Olympic Sport. 2015;(4):39–48. (In Russ.)
  11. Vasiliev AS, Abdrashitova (Polomeyeva) NYu, Udut VV. Ecdysteroids and their biological activity. Rastitelnye resursy. 2015;51(2):229–259. (In Russ.)
  12. Barnaulov OD. The strategy elements of phytotherapy for children with frequent respiratory viral infections. classical phytoadaptogenes. Tradicionnaya medicina. 2015;(3(42)):52–56. (In Russ.)
  13. Głazowska J, Kamiński MM, Kamiński M. Chromatographic separation, determination and identification of ecdysteroids: Focus on Maral root (Rhaponticum carthamoides, Leuzea carthamoides). J Sep Sci. 2018;41(23):4304–4314. doi: 10.1002/jssc.201800506
  14. Seifulla R, Potupchik T, Poluboyarinov P. Possibilities of using the combined adaptogen Leveton P. Vrach. 2018;29(10):37–44. (In Russ.). doi: 10.29296/25877305
  15. Kokoska L, Janovska D. Chemistry and pharmacology of Rhaponticum carthamoides: a review. Phytochemistry. 2009;70(7):842–855. doi: 10.1016/j.phytochem.2009.04.008
  16. Syrov VN. Comparative experimental investigation of the anabolic activity of phytoecdysteroids and steranabols. Pharmaceutical Chemistry Journal. 2000;34(4):193–197. doi: 10.1007/BF02524596
  17. Woźniak Ł, Skąpska S, Marszałek K. Ursolic acid – a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules. 2015;20(11):20614–20641. doi: 10.3390/molecules201119721
  18. Yang H, Dou QP. Targeting apoptosis pathway with natural terpenoids: implications for treatment of breast and prostate cancer. Curr Drug Targets. 2010;11(6):733–744. doi: 10.2174/138945010791170842
  19. Liu J. Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol. 1995;49(2):57–68. doi: 10.1016/0378-8741(95)90032-2
  20. Liu J. Oleanolic acid and ursolic acid: research perspectives. J Ethnopharmacol. 2005;100(1–2):92–94. doi: 10.1016/j.jep.2005.05.024
  21. Jäger S, Trojan H, Kopp T, et al. Pentacyclic triterpene distribution in various plants – rich sources for a new group of multi-potent plant extracts. Molecules. 2009;14(6):2016–2031. doi: 10.3390/molecules14062016
  22. Khalikova DA, Ankov SV, Meshkova JV, Tolstikova TG. Anabolic activity of leuzea and cranberry meal plant extracts composition. Siberian Scientific Medical Journal. 2021;41(6):45–50. (In Russ.). doi: 10.18699/SSMJ20210604
  23. Sadym AV, Lagunin AA, Filimonov DA, Poroikov VV. Internet system predicting the spectrum of biological activity of chemical compounds. Pharmaceutical Chemistry Journal. 2002;36(10):538–543. doi: 10.1023/A:1022402425883
  24. Sweat ML, Samuels LT, Lumry R. Preparation and characterization of the enzyme which converts testosterone to androstenedione. J Biol Chem. 1950;185(1):75–84.
  25. Horton R, Tait JF. Androstenedione production and interconversion rates measured in peripheral blood and studies on the possible site of conversion to testosterone. J Clin Invest. 1966;45(3):301–313. doi: 10.1172/JCI105344
  26. Montano M. Translational models, methods and concepts in studies of muscle tissue repair. In: Translational Biology in Medicine. 2014. P. 103–128. doi: 10.1533/9781908818652.103
  27. Sprando RL, Collins TF, Black TN, et al. Effects of androstenedione on in utero development in rats. Food Chem Toxicol. 2004;42(6):917–924. doi: 10.1016/j.fct.2004.01.015
  28. Tai MM. A mathematical model for the determination of total area under glucose tolerance and other metabolic curves. Diabetes care. 1994;17(2):152–154. doi: 10.2337/diacare.17.2.152

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Area under the curve (AUC). The level of testosterone in the blood of female mice CD-1 after a single injection in the intact group (a), extract of leuzea + extract of cranberry meal 70+500 mg/kg (b), extract of leuzea 70 mg/kg (c), extract of cranberry meal 500 mg/kg (d); * p < 0.05 — significance level compared to intact group (a)

Download (34KB)
3. Fig. 2. Area under the curve (AUC). The level of testosterone in the blood of male mice CD-1 after a single injection in the intact group (a), extract of leuzea + extract of cranberry meal 70+500 mg/kg (b), extract of leuzea 70 mg/kg (c), extract of cranberry meal 500 mg/kg (d); * р < 0.05 — significance level compared to intact group (a), ** р < 0.005

Download (31KB)

Copyright (c) 2021 Khalikova D.A., Ankov S.V., Meshkova J.V., Tolstikova T.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies