RNA interference as a regulatory mechanism of genes activity in the nervous and immune systems



Cite item

Full Text

Abstract

The review is devoted to the research results of the RNA interference processes in the nervous and immune systems, the small RNAs structures and functions, the possibility in the use of the siRNAs and miRNAs in the human disease therapy, and also - to the several problems connected with analysis of the siRNAs systems particularity functioning in different organisms, nature of the signals for dsRNAs appearance, technologic approaches to the RNAi targets screening.

Full Text

Restricted Access

About the authors

T B Kazakova

Research Institute of Experimental Medicine of the RAMS, St. Petersburg

E A Korneva

Research Institute of Experimental Medicine of the RAMS, St. Petersburg

References

  1. Авилов С. РНК-интерференция против «неправильных» генов // «Вокруг Света»: Генетический форум «Как заставить молчать гены? РНК-интерференция». 2007. 3 с. http://geneforum.ru/login.php
  2. Вильгельм А.Э., Чумаков СП., Прасолов B.C. Интерференция РНК: биология и перспективы применения в биомедицине и биотехнологии // Мол. биол. 2006. Т. 40. С. 387-403.
  3. Григорович С. GenoTerra: Информационно-аналитическое издание о генетике. 2007. http://ge-noterra.ru/news/view/18/776
  4. Клёнов М.С. Лауреаты Нобелевской премии 2006 года по физиологии и медицине / Э. Файер и К. Мэллоу // Природа. 2007. № 1. С. 76-79.
  5. Appasani К. Global enthusiasm for RNA interference // Curr. Drug. Discovery. 2004. P. 32-34.
  6. Bantounas I., Phylactou L.A., Uney J.B. RNA interference and the use of small interfering RNA to study gene function in mammalian systems // J. Mol. Endocrinol. 2004. Vol. 33. P. 545-557.
  7. Bentwich I., Avniel A., Karov Y. et al. Identification of hundreds of conserved and noncon nonconserved human microRNAs // Nat. Genet. 2005. Vol. 37. P. 766-770.
  8. Bentwich I. Prediction and validation of microRNAs and their targets // FEBS Lett. 2005. Vol. 579. P. 5904-5910.
  9. Bernstein E., Caudy A., Hammond S., Hannon G. Role for a bidentate ribonuclease in the initiation step of RNA interference // Nature. 2001. Vol. 409. P. 363-366.
  10. Brennecke J., Hipfner D.R., Stark A. et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapop-totic gene hid in Drosophila // Cell. 2003. Vol. 113. P. 25-36.
  11. Carthew R.W. A new RNA dimension to genome control // Science. 2006. Vol. 313. P. 305-306.
  12. Chan J.A., Krichevsky A.M., Kosik K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells // Cancer Res. 2005. Vol. 65. P. 6029-6033.
  13. Cheng H.-Y.M., Papp J.W., Varlamova O. et al. MicroRNA modulation of circadian-clock period and entrainment//Neuron. 2007. Vol. 54. P. 813-829.
  14. Cheng L.C., Tavazoie M., Doetsch F. Stem cells: from epigenetics to microRNAs // Neuron. 2005. Vol. 46. P. 363-367.
  15. Couzin J. Erasing microRNAs reveals their powerful punch // Science. 2007. Vol. 316. P. 30.
  16. Daneholt B. The Nobel Prize in Physiology or Medicine 2006, Advanced Information // Nobelforsam-lingen, The Nobel Assably at Karolinska Institutet. 2006.
  17. DeChiara T.M., Brosius J. Neural BC1 RNA: cDNA clones reveal nonrepetitive sequence content // Proc. Natl. Acad. Sci. USA. 1987. Vol. 8. P. 2624-2628.
  18. Diederichs S., Haber D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression // Cell. 2007. Vol. 131. P. 1097-1108.
  19. Dillon Ch.R, Sandy P., Nencioni A. et al. RNAi as an experimental and therapeutic tool to study and regulate physiological and disease processes // Ann. Rev. Physio. 2005. Vol. 67. P. 147-173.
  20. Doench J.G., Petersen Ch.R, Sharp PA. siRNAs can function as miRNAs // Genes. Dev. 2003. Vol. 17. P. 438-442.
  21. Doench J.G., Sharp PA. Specificity of microRNA target selection in translational repression // Genes Dev. 2004. Vol. 18. P. 504-511.
  22. Eulalio A., Huntzinger E., Izaurralde E. Getting to the root of miRNA-mediated gene silencing // Cell. 2008. Vol. 132. P. 9-14.
  23. Fire A., Xu S., Montgomery M.K., Kostas S.A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans // Nature. 1998. Vol. 391. P. 806-811.
  24. Fire A. RNA-triggered gene silencing // TIG. 1999. Vol. 15. P. 358-363.
  25. Giese K. siRNA as a route to new cancer therapies // Curr. Drug. Discovery. 2004. P. 25-28.
  26. Gregory R.I., Shiekhattar R. MicroRNA biogenesis and cancer // Cancer Res. 2005. Vol. 65. P. 3509-3512.
  27. Grophans H., Fillipowicz W. The expanding world of small RNAs //Nature. 2008. Vol. 451. P. 414-416.
  28. Gran D., Wang Y.L., Langenberger D., Gunsalus K.C., Rajewsky N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets //PLoS Comput. Biol. 2005. P. I:el3.
  29. Hammond S., Bernstein E., Beach D., Hannon G. An RNA-directed nuclease mediates post-transcription-al gene silencing in Drosophila cells // Nature. 2000. Vol. 404. P. 293-296.
  30. Flobert O. Common logic of transcription factor and microRNA action // Trends Biochem. Sci. 2004. Vol. 29. P. 462-468.
  31. Huttenhofer A., Kiefmann M., Meier-Ewert S. et al. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse //'EMBO J. 2001. Vol. 20. P. 2943-2953.
  32. Hutvagner G., McLachlan J., Pasquinelli A.E. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA // Science. 2001. Vol. 293. P. 834-838.
  33. Iorns E., Lord C.H.J., Turner N, Ashworth A. Utilizing RNA interference to enhance cancer drug discovery // Nature. 2007. Vol. 6. P. 556-568.
  34. Johnston R.J., Hobert O.A microRNA controlling left/ right neuronal asymmetry in Caenorhabditis elegans // Nature. 2003. Vol. 426. P. 845-849.
  35. Kalluri R., Kanasaki K. Generic block an angiogenesis //Nature. 2008. Vol. 452. P. 543-545.
  36. Kim J., Krichevsky A., Grad Y. et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons // Proc. Natl. Acad. Sci. USA. 2004. Vol. 101. P. 360-365.
  37. Kim D.H., Rossi J. RNAi mechanisms and applicatios // BioTechniques. 2008. Vol. 44. P. 613-616.
  38. Kitabwalla M., Ruprecht R.M. Clinical implications of basic research // N. Eng. J. Med. 2002. Vol. 347. P. 1364-1367.
  39. Kleinman M.E., Yamada K., Takeda A. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3 // Nature. 2008. Vol. 452. P. 591-597.
  40. Kloosterman W.P., Wienholds E., Ketting R.F., Plasterk R.H. Substrate requirements for let-7 function in the developing zebrafish embryo // Nucleic. Acids. Res. 2005. Vol. 32. P. 6284-6291.
  41. Kosik K.S. The neuronal microRNA system // Nature Rev. Neuroscience. 2006. Vol. 7. P. 911-920.
  42. Kosik K.S., Krichevsky A.M. The Elegance of the MicroRNAs: A Neuronal Perspective // Neuron. 2005. Vol. 47. P. 779-782.
  43. Lau N.C., Seto A.G., Kim J. et al. Characterization of the piRNA complex from rat testes // Science. 2006. Vol. 313. P. 363-372.
  44. Lee Y, Ahn C, Han J. et al. The nuclear RNase III Drosha initiates microRNA processing // Nature. 2003. Vol. 425. P. 415-419.
  45. Lewis B.P, Shih I.H., Jones-Rhoades M.W et al. Prediction of mammalian microRNA targets // Cell. 2003. Vol. 115. P. 787-798.
  46. Lim L.P., Lau N.C., Garrett-Engele P. et al. Microarray analysis shows that some microRNAs downregu-late large numbers of target mRNAs // Nature. 2005. Vol. 433. P. 769-773.
  47. Lukiw W.J., Handley P., Wong L. et al. BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD) //Neurochem. Res. 1992. Vol. 7. P. 591-597.
  48. Мао C.P., Hung C.F., Wu T.C. Immunotherapeutic strategies employing RNA interference technology for the control of cancers // J. Biomed. Sci. 2007. Vol. 14. P. 15-29.
  49. Martinez J., Patkaniowska A., Urlaub H et al. Singlestranded antisense siRNAs guide target RNA cleavage in RNAi // Cell. 2002. Vol. 110. P. 563-574.
  50. Meguro M., Mitsuya K., Nomura N. et al. Largescale evaluation of imprinting status in the Prader-Willi syndrome region: an imprinted direct repeat cluster resembling small nucleolar RNA genes // Hum. Mol. Genet. 2001. Vol. 10. P. 383-394.
  51. Mi Sh., Cai Т., Hu Y. et al. Sorting of small RNAs into Arabidopsis Argonaute complex is directed by the 5'-terminal nucleotide // Cell. 2008. Vol. 133. P. 116-127.
  52. Plasterk, RHA., RNA Silencing: The Genome's Immune System // Science. 2002. Vol. 296. P. 1263-1265.
  53. Presutti. C, Rosati J., Vincenti S., Nasi S. Non coding RNA and Brain // Neurosci. 2006. Vol. 7 (Suppl. 1). S5.
  54. Rodriguez A., Vigorito E., Clare S. et al. A Requirement of bic/microRNA-155 for normal immune function // Science. 2007. Vol. 316. P. 608-611.
  55. Rusinov V, Baev V, Minkov I.N., Tabler M. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence // Nucleic Acids Res. 2005. Vol. 33 (Suppl. 2). P. W696-W700.
  56. Sempere L.F., Freemantle S., Pitha-Rowe I. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation // Genome Biol. 2004. Vol. 5. P. R13.
  57. Sharp PA. The Biology of Short RNAs // In «RNA World», Cold Spring Harbor Lab. Press, Cold Spring Harbor. NY, 2006.
  58. Stefani G., Slack F.J. Small non-coding RNAs in animal development//Nature Rev. Mol. Cell. Biol. 2008. Vol. 9(3). P. 219-230.
  59. Tiedge H., Chen W., Brosius J. Primary structure, neuralspecific expression, and dendritic location of human BC200 RNA// J. Neurosci. 1993. Vol. 13. P. 23822390.
  60. Tiedge H, Fremeau R.T.Jr., Weinstock PH. et al. Dendritic location of neural BC1 RNA // Proc. Natl. Acad. Sci. USA. 1991. Vol. 88. P. 2093-2097.
  61. Tili E., Michaille J.-J., Cimino A. et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-a stimulation and their possible roles in regulating the response to endotoxin shock // J. Immunol. 2007. Vol. 179. P. 5082-5089.
  62. Tuschl T. Expanding small RNA interference // Nat. Biotechnol. 2002. Vol. 20. P. 446-448.
  63. van Rooij E., Olson E.N. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets // J. Clin. Invest. 2007. Vol. 4. P. 2369-2376.
  64. Vasudevan S., Tong Y, Steitz J.A. Switching from repression to activation: microRNAs can up-regulate translation // Science. 2007. Vol. 318. P. 1931-1934.
  65. Vella M.C., Reinert K., Slack F.J. Architecture of a validated microRNA: target interaction // Chem. Biol. 2004. Vol. 11. P. 1619-1623.
  66. Vo N, Klein M.E., Variamova O., Keller D.M. et al. cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102. P. 1642616431/
  67. Yi R., QinY, Macara I.G., Cullen B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs // Genes Dev. 2003. Vol. 17. P. 3011- 3016.
  68. Yi R., Poy M.N., Stoffel M., Fuchs E. A skin microRNA promotes differentiation by repressing «stemness» // Nature. 2008. Vol. 452. P. 225-229.
  69. Zalfa F, Giorgi M., Primerano B. et al. The fragile x syndrome protein FMRP associates with ВС 1 RNA and regulates the translation of specific mRNAs at synapses//Cell. 2003. Vol. 112. P. 317-327.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Kazakova T.B., Korneva E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies