INTERACTIONS OF THE NERVOUS AND IMMUNE SYSTEMS IN HEALTH AND DISEASE

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


The historical aspects of formation of immunophysiology as a sciences as well as the review of modern studies of interactions between nervous and immune systems in health and disease are reviewed in the article. The recent data describing the CNS reactions to antigen stimuli of different nature and possibility of involvement in these reactions of neurons of different ergicity, in particular, orexin-containing hypothalamic neurons are cited. Besides, one of the possible hypotheses about information transduction pathways from immune system to the nervous is observed in the article.

Full Text

Restricted Access

About the authors

E A Korneva

St.-Petersburg State University

Email: korneva_helen@mail.ru
St.-Petersburg, Russia
Academic RAMS

S V Perekrest

Institute of Experimental Medicine of the North West Branch of the Russian Academy of Medical Sciences

St.-Petersburg, Russia

References

  1. Броун Г. Р., Могутов С. С., Кан Г. С. Роль некоторых структур гипоталамуса в регуляции иммунобиологических процессов при иммунизации организма вакциной БЦЖ. // Бюл. эксперим. биол. и мед.- 1970.- Т. 70, № 7.- С. 74-78.
  2. Клименко В. М., Корнева Е. А. Нейрональная активность гипоталамуса и гомеостатические реакции // Мат. конф. Общества физиологов и патофизиологов ГДР. Халле.- 1974.- С. 17-18.
  3. Besedovsky H. O., Sorkin E., Felix D., Haas H. Hypothalamic changes during the immune response // Eur. J. immunol.- 1977.- Vol. 7.-P. 323-325.
  4. Корнева Е. А., Клименко В. М., Шхинек Э. К. Нейрогормональное обеспечение иммунного гомеостаза.- Л.: Наука, 1978.- 248 с.
  5. Григорьев В. А. Влияние экспериментальной модуляции функционального состояния гипоталамуса на развитие иммунного ответа // Физиол. журн. им. И. М. Сеченова.- 1981.- Т. 67, № 3.- С. 463-467.
  6. Rivest S., Torres G., Rivier C. Differential-effects of central and peripheral injection of interleukin-1-beta on brain c-fos expression and neuroendocrine function // Brain res.- 1992.- Vol. 587, № 1.- P. 13-23.
  7. Chang S. L., Ren T., Zadina J. E. Interleukin-1 activation of FOS proto-oncogene protein in the rat hypothalamus // Brain Res.- 1993.-Vol. 617.- P. 123-130.
  8. Ericsson A., Kovacs K. J., Sawchenko P. E. A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons // J Neurosci.- 1994.- Vol. 14.- P. 897-913.
  9. Bulloch K. Neuroanatomy of lymphoid tissue: a review // Neural modulation of immunity.- N. Y., 1985.- P. 111-140.
  10. Vizi E. S, Orso E., Osipenko O. N. et al. Neurochemical, electrophysiological and immunocytochemical evidence for a noradrenergic link between the sympathetic nervous system and thymocytes // Neurosci.- 1995.- Vol. 68.- P. 1263-1276.
  11. Felten S. Y., Olschowka J. J. Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synaptic-like contacts on lymphocytes in the splenic white pulp // Neurosci. Res.- 1987.- Vol. 18.- P. 37-48.
  12. Denes A., Boldogkoi Z., Uhereczky G. Central automatic control of the bone marrow: multisynaptic tract trasing by recombinant pseudorabies virus // Neurosci.- 2005.- Vol. 134, № 3.- P. 947-963.
  13. Goehler L. E. Gaykema R. P. H., Maier S. E., Watkins L. R. Vagal afferents innervate deep cervical and iliac lymph nodes in the rat // Soc. neurosci. abstr.- 2000.- Vol. 26.- P. 1184.
  14. Cake M. N., Litwak G. The glucocorticoid receptops // Biochemical actions of hormones. / Ed.G. Litwak.- N. Y.: Acad. Press, 1975.-Vol. 3.- P. 317-390.
  15. Werb Z., Foley R., Munck A. Interaction of glucocorticoids with macrophages. Identification of glucocorticoid receptors in monocytes and macrophages // J. Ехр. Med.- 1978.- Vol. 147.- P. 1684-1694.
  16. Helderman J. H., Strom T., Strannegard O. J. Specific insulin binding site on T and B lymphocytes as a marker of cell activation // Nature.-1978.- Vol. 274.- P. 62-63.
  17. Russel D. N., Matrision L., Kibler R. Prolactin receptor on human lymphocytes and their modulation by cyclosporine // Biochem. biophys. res. commun.- 1984.- Vol. 121.- P. 899-906.
  18. Richman D. P., Arnason B. G. Nicotinic acetylcholine receptor:evidence for a functionally distinct receptor of human lymphocytes // Proc. Natl. Acad. Sci. USA.- 1979.- Vol. 76.- P. 4632-4635.
  19. Hasum E., Chang K. J., Cuatrecasas P. Specific nonopiat receptors for beta endorphins. // Nature.- 1979.- Vol. 205.- P. 1033-1035.
  20. Stanisz A., Scicchitano R., Payan D., Bienenstock J. In vitro studies of immunoregulation by substance P and somatostatin // Ann. NY Acad. Sci.- 1987.- Vol. 496.- P. 217-255.
  21. Корнева Е. А., Хай Л. М. Влияние разрушения участков гипоталамической области на процесс иммуногенеза. // Физиол. журн.-1963.- Т.49, № 1.- С. 42-48.
  22. Лесников В. А., Аджиева С. Б., Исаева Е. Н. Гипоталамическая модуляция гемопоэтической функции костного мозга // Сб. I Всесоюз. Иммунол. Съезда. Тез. Т. 1.- М., 1989.- С. 331.
  23. Munck A., Guyre P. M. Glucocorticoids and immune function // Psychoneuroimmunology / еds. R. Ader, D. Felten, N. Cohen.- N. Y.: Acad. press inc.- 1991.- P. 447-513.
  24. Bateman A., Singh A., Kral T., Solomon S. The immunehypothalamic-pituitary-adrenal axis // Endocr Rev.- 1989.- Vol. 10.- P. 92-111.
  25. Snow E. С. Insulin and growth hormone function as minor growth factors that-potentiate lymphocyte activation // J. immunol.- 1985.- Vol. 135.- P.776s-778s.
  26. Berczi I., Nagy E. Effects of hypophysectomy on immune function // Psychoneuroimmunology. Ed. 2 / еds. Ader, D. Felten, N. Cohen.-N. Y.: Acad. press inc. 1991.- P. 339-375.
  27. Bulloch K., Cullen M. R., Schuartz R. H., Longo D. L. Development of innervation within syngenic thymus tissue transplanted under the kidney capsule of the nude mause: a light and ultrastructural microscope study // J. Neurosci. Res.- 1987.- Vol. 8, № 1.- P. 16-27.
  28. Ballou L. R., Laulederkind S. J. F., Rosloniec E. F., Raghow R. Ceramide signaling and the immune response // Biochim. Biophys. Acta.-1996.- Vol. 1301.- P. 273-287.
  29. Felten D. L., Felten S. Y., Belinger D. L. Noradrenergic sympathetic neural interactions with the immune system: structure and function // Immunol. Rev.- 1987.- Vol. 100.- P. 225-260.
  30. Jankovic B. D., Spector N. H. Effect on the immune system of lesioning and stimulation of the nervous system: neuroimmunomodulation // Enkephalins and endorphins: Stress and immune system / еd. N. P. Plotnikoff et al.- N. Y.; London, 1986.- P. 189-220.
  31. Долин А. О., Крылов В. Н. Экспериментальное изучение роли коры головного мозга в иммунном ответе тела. // Журн. высшей нервной деятельности.- 1952.- Т. 11, № 4.- С. 547-560.
  32. Danzer R., Bluthe R.-M., Laye S. et al. Cytokines and Sickness Behavior // Annals of New York Acad. Sci.- 1998.- Vol. 840.-P. 586-590.
  33. Dressler K. A., Mathias S., Kolesnick R. N. Tumor necrosis factor-alpha activates sphingomyelin signal transduction pathway in a cell-free system // Science.- 1992.- Vol. 255.- P. 1715-1718.
  34. Dorshkind K., Horseman N. D. Anterior pituitary hormones, hormones, stress, and immune system homeostasis // Bioassays.- 2001.-Vol. 23, № 3.- P. 288-294.
  35. Elmquist J. K., Ackermann M. R., Register K. B. et al. Induction of Fos-like immunoreactivity in the rat brain following Pasteurella multocida endotoxin administration // Endocrinology.- 1993.- Vol. 133.- P. 3054-3057.
  36. Gaykema R. P. A., Goehler L. E., Armstrong C. B. et al. Differential FOS expression rat brain induced by lipopolisaccharide and staphylococcal enterotoxin B // Neuroimmunomodulation.-1999.- Vol. 6.- P. 220.
  37. Zhang Y.-H., Lu J., Elmquist J. K. et al. Lipopolysaccharide activates specific populations of hypothalamic and brainstem neurons that project to the spinal cord // J. of Neurosci.- 2000.- Vol. 20, № 17.- P. 6578-6586.
  38. Goehler L. E. Gaykema P. R. A., Hansen K. Staphylococcal enterotoxin B induces fever, brain c-Fos expression, and serum corticosterone in rats // Am. J. Physiol. Regulatory Integrative Comр. Physiol.- 2001.- Vol. 280.- P. R1434-R439.
  39. Корнева Е. А., Казакова Т. Б., Носов М. А. Экспрессия c-fos мРНК и c-Fos-подобных белков в клетках гипоталамических структур при введении антигена. // Аллергология и иммунология.- 2001.- № 1.- C. 37-44.
  40. Перекрест С. В., Гаврилов Ю. В., Абрамова Т. В. и др. Активация клеток гипоталамических структур при введении антигенов различной природы (по экспрессии c-fos гена) // Медицинская иммунология.- 2006.- Т. 8, № 5-6.- С. 631 636.
  41. Гаврилов Ю. В., Перекрест С. В., Новикова Н. С. Экспрессия c-Fos белка в клетках различных структур гипоталамуса при электроболевом раздражении и введении антигенов // Физиологический журнал им. И. М. Сеченова.- 2006.- Т. 92, № 10.- С. 1195-1203.
  42. Zhang S., Blache D., Vercoe P. E. Expression of orexin receptors in the brain and peripheral tissues of the male sheep // Regul. Pept.- 2005.-Vol. 124.- P. 81-87.
  43. Cano G., Sved A. F., Rinaman L. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. // J. of comр. neurol.- 2001.- Vol. 439.- P. 1-18.
  44. Bluthe R. M., Walter P., Parnet C. R. et al. Lipopolysaccharide induces sickness behavior in rats by a vagal mediated mechanism // Acad. Sci. III.- 1994.- Vol. 317.- P. 499-503.
  45. Watkins L. R., Goehler L. E., Relton J. K. et al. Blockade of interleukin-1-induced fever by subdiaphragmatic vagotomy; evidence for vagal mediation of immune brain communication // Neurosci. lett.- 1995.- Vol. 183.- P. 27-31.
  46. Watkins L. R., Wiertelak E. P., Goehler L. E. Neurocircuitry of illness-induced hyperalgesia // Brain Res.- 1994.- Vol. 639.- P. 283-299.
  47. Laye S., Bluthe R. M., Kent S. et al. Subdiaphragmatic vagotomy blocks induction of IL-1 beta mRNA in mice brain in response to peripheral LPS // Am. J. Physiol.- 1995.- Vol. 268.- P. R1327-R1331.
  48. Hansen M. K., Nguyen K. Т., Fleshner M. et al. Effects of vagotomy on serum endotoxin, cytokines, and corticosterone after intraperitoneal lipopolysaccharide // Am. J. Physiol Regulatory Integrative Comp Physiol.- 2000.- Vol. 278, № 2.- P. R331-R336.
  49. Van Dam A. M., Bol J. G., Gaykema R. P. A. et al. Vagotomy does not inhibit high dose lipopolysaccharide-induced interleukin-1beta immunore-activity in rat brain and pituitary gland // Neurosci. Lett.- 2000.- Vol. 285, № 3.- P. 169-172.
  50. Azab A. N., Kaplanski J. Vagotomy attenuates the effect of lipopolysaccharide on body temperature of rats in a dose-dependent manner // Innate Immunity.- 2001.- Vol. 7, № 5.- P. 359-364.
  51. Hermann G. E., Emch G. S., Tovar C. A., Rogers R. С. C-Fos generation in the dorsal vagal complex after systematic endotoxin is not dependent on the vagus nerve // Am. J. Physiol. Regulatory Integrative Comр. Physiol.- 2001.- Vol. 280.- P. R289-R299.
  52. Wieczorek M., Swiergiel A. H., Pournajafi-Nazarloo H., Dunn A. J. Physiological and behavioral responses to interleukin-1beta and LPS in vagotomized mice // Physiol. Behav.- 2005.- Vol. 85, № 4.- P. 500-511.
  53. Konsman J. P., Luheshi G. N., Bluthe R. M., Dantzer R. The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis // Eur. J. Neurosci.- 2000.- Vol. 12, № 12.- P. 4434-4446.
  54. Goehler L. E., Gaykema P. R. A., Hammach S. E. et al. Interleukin-1 induces c-Fos immunoreactivity inprimary afferent neurons of the vagus nerve // Soc. neurosci. abstr.- 1998.- Vol. 804.- P. 306-310.
  55. Gaykema R. P. A., Goehler L. E., Bol F. J. H. et al. Bacterial endotoxin induces Fos immunoreactivity in primary afferent neurons of the vagus nerve // Neuroimmunomodulation 1998.- Vol. 5.- P. 234-240.
  56. Goehler L. E., Erisir A., Gaykema R. P. A. Neural-immune interface in the rat area postrema // Neuroscience.- 2006.- Vol. 140, № 4.-P. 1415-1434.
  57. Ek M., Kurosawa M., Lundeberg T., Ericsson A. Activation of vagal afferents after intravenous injection of interleukin-1b: role of endogenous prostaglandins // J. Neurosci.- 1998.- Vol. 18.- P. 9471-9479.
  58. Lu X. Y., Yang G. Z., Sun H. С. The activation of vagus afferent in response to lipopolysaccharide the role of interleukin-1 // Sheng Li Xue Bao.- 2002.- Vol. 54, № 2.- P.111-114.
  59. Hosoi T., Okuma Y., Matsuda T., Nomura Y. Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion // Auton. Neurosci.- 2005.- Vol. 120, № 1-2.- P. 104-107.
  60. Elmquist J. K., Saper C. B. Activation of neurons projecting to the paraventricular hypothalamic nucleus by intravenous lipopolysaccharide // J. of cоmр. neurol.- 1996.- Vol. 374, № 3.- P. 315-331.
  61. Elmquist J. K., Scammell T. E., Jacobson C. D., Saper C. B. Distrubution of Fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration // J. of ComP. Neurol.- 1996.- Vol. 371, № 1.- P. 85-103.
  62. Day H. E., Akil H. Differential pattern of c-fos mRNA in rat brain following central and systemic administration of interleukin-1-beta: implications for mechanism of action // Neuroendocrinology.- 1996.- Vol. 63, № 3.- P. 207-218.
  63. Sagar S. M., Price K. J., Kasting N. W., Sharp F. R. Anatomic patterns of Fos immunostaining in rat-brain following systemic endotoxin administration // Brain res. bul.-1995.- Vol. 36, № 4.- P. 381-392.
  64. Gaykema R. P., Balachandran M. K., Godbout J. P. et al. Enhanced neuronal activation in central autonomic network nuclei in aged mice following acute peripheral immune challenge // Auton Neurosci.- 2007.- Vol. 131, № 1-2.- P. 137-142.
  65. Ge X., Yang Z., Duan L., Rao Z. Evidence for involvement of the neural pathway containing the peripheral vagus nerve, medullary visceral zone and central amygdaloid nucleus in neuroimmunomodulation // Brain Res.- 2001.- Vol. 914, № 1-2.- P. 149-158.
  66. Gaykema R. P. A., Goehler L. E. Ascending caudal medullary catecholamine pathways drive sickness-induced deficits in exploratory behavior: brain substrates for fatigue? // Brain Behav Immun.- 2011.- Vol. 25, № 3.- P. 443-460.
  67. Marvel F. A., Chen C. С., Badr N. et al. Reversible inactivation of the dorsal vagal complex blocks lipopolysaccharide-induced social withdrawal and c-Fos expression in central autonomic nuclei // Brain Behav. Immun.- 2004.- Vol. 18, № 2.- P. 123-134.
  68. Gaykema R. P. A., Goehler L. E., Lyte M. Brain response to cecal infection with Campylobacter jejuni: analysis with Fos immunohistochemistry // Brain Behav. Immun.- 2004.- Vol. 18, № 3.- P. 238-245.
  69. Pavlov V. A., Wang H., Czura C. J. et al. The Cholinergic Anti-inflammatory Pathway: A Missing Link in Neuroimmunomodulation // Molecular Med.- 2003.- Vol. 9, № 5-8.- P. 125-134.
  70. Gallowitsch-Puerta M., Pavlov V. A. Neuro-immune interactions via the cholinergic anti-inflammatory pathway // Life Sci.- 2007.- Vol. 80, № 24-25.- P. 2325-2329.
  71. Goehler L. E., Gaykema R. P. A., Opitz N. et al. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni // Brain Behav. Immun.- 2005.- Vol. 19, № 4.- P. 334-344.
  72. Goehler L. E., Park S.-M., Opitz N. et al. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior // Brain Behav. Immun.- 2008.- Vol. 22, № 3.- P. 354-366.
  73. Tkacs N. С., Strack A. M. Systemic endotoxin induces fos-like immunoreactivity in rat spinal sympathetic regions // J. of the autonomic nervous system.- 1995.- Vol. 51, № 1.- P. 1-7.
  74. Elenkov I. J., Wilder R. L., Chrousos G. P., Vizi E. S. The sympathetic nerve - an integrative interface between two supersystems: the brain and the immune system // Pharmacol. Rev.- 2000.- Vol. 52, № 4.- P. 595-638.
  75. Gaykema R. P. A., Park S. M., McKibbin C. R., Goehler L. E. Lipopolysaccharide suppresses activation of the tuberomammillary histaminergic system concomitant with behavior: a novel target of immune-sensory pathways // Neuroscience.- 2008.- Vol. 152, № 1.- P. 273-287.
  76. Park S.-M., Gaykema R. P. A., Goehler L. E. How does immune challenge inhibit ingestion of palatable food? Evidence that systemic lipopolysaccharide treatment modulates key nodal points of feeding neurocircuitry // Brain Behav. Immun.- 2008.- Vol. 22, № 8.- P.1160-1172.
  77. Vizi E. S., Elenkov I. J. Nonsynaptic noradrenaline release in neuro-immune responses // Acta Biol Hung.- 2002.- Vol. 53, № 1-2.-P. 229-244.
  78. Mori K., Kaneko Y. S., Nakashima A. et al. Effect of peripheral lipopolysaccharide injection on dopamine content in murine anterior olfactory nucleus // J. Neural. Transm.- 2003.- Vol. 110, № 1.- P. 31-50.
  79. Hollis J. H., Lightman S. L., Lowry C. A. Lipopolysaccharide has selective actions on sub-populations of catecholaminergic neurons involved in activation of the hypothalamic-pituitary-adrenal axis and inhibition of prolactin secretion // J. of Endocrinology.- 2005.- Vol. 184.-P. 393-406.
  80. Kaneko Y. S., Mori K., Nakashima A. et al. Peripheral injection of lipopolysaccharide enhances expression of inflammatory cytokines in murine locus coeruleus: possible role of increased norepinephrine turnover // J. Neurochem.- 2005.- Vol. 94, № 2.- P. 393-404.
  81. Gaykema R. P. A., Goehler L. E. Lipopolysaccharide challenge-induced suppression of Fos in hypothalamic orexin neurons: Their potential role in sickness behavior // Brain, Behavior, and Immunity.- 2009.- Vol. 23.- P. 926-930.
  82. Ota A., Mori K., Kaneko Y. S. et al. Peripheral lipopolysaccharide administration affects the olfactory dopamine system in mice // Ann. N. Y. Acad. Sci.- 2008.- Vol. 1148.- P. 127-135.
  83. Chiba S., Itateyama E., Oka K. et al. Hypothalamic Neuronal Histamine Modulates Febrile Response but Not Anorexia Induced by Lipopolysaccharide // Exp. Biol. Med.- 2005.- Vol. 230, № 5.- P. 334-342.
  84. Baharnoori M., Bhardwaj S. K., Srivastava L. K. Neonatal behavioral changes in rats with gestational exposure to lipopolysaccharide: a prenatal infection model for developmental neuropsychiatric disorders // Schizophrenia Bulletin.- 2010.- Aug 30. [Epub ahead of print].
  85. Zhu Ch.-B., Lindler K. M., Owens A. W. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters // Neuropsychopharmacology.- 2010.- Vol. 35.- P. 2510-2520.
  86. Lin Y.-L., Lin S.-Y., Wang S. Prenatal lipopolysaccharide exposure increases anxiety-like behaviors and enhances stress-induced corticosterone responses in adult rats // Brain, Behavior, and Immunity.- 2012.- Vol. 26, № 3.- P. 459-468.
  87. Kim Y. W., Kim K. H., Ahn D. K. et al. Time-course changes of hormones and cytokines by lipopolysaccharide and its relation with anorexia // J. Physiol. Sci.- 2007.- Vol. 57, № 3.- P. 159-165.
  88. Painsipp E., Herzog H., Holzer P. Implication of neuropeptide-Y Y2 receptors in the effects of immune stress on emotional, locomotor and social behavior of mice // Neuropharmacology.- 2008.- Vol. 55, № 1.- P. 117-126.
  89. Edelsbrunner M. E., Herzog H., Holzer P. Evidence from knockout mice that peptide YY and neuropeptide Y enforce murine locomotion, exploration and ingestive behaviour in a circadian cycle- and gender-dependent manner // Behaviour Brain Research.- 2009.- Vol. 203, № 1.-P. 97-107.
  90. Sakurai T., Amemiya A., Ishii M. et al. Orexins and orexin receptors: a family of hypothalamic neuroprptides and G protein-coupled receptors that regulate feeding behavior // Cell.- 1998.- Vol. 92.- P. 573-585.
  91. Date Y., Ueta Y., Yamashita H. et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems // Proc. Nat. Acad. Sci. USA.- 1999.- Vol. 96.- P. 748-753.
  92. Vzn den Pol A. N., Gao X. B., Obrietan K. et al. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin // J. Neurosci.- 1998.- Vol. 18.- P. 7962-7971.
  93. Vzn den Pol A. N. Narcolepsy: a neurodegenerative disease of the hypocretin system? // Neuron.- 2000.- Vol. 27.- P. 415-418.
  94. Beuckmann C., Yanagisawa M. Orexins: from neuropeptides to energy homeostasis and sleep/wake regulation. // J. Mol. Med.- 2002.-Vol. 80, № 6.- P. 329-342.
  95. Vzn den Top M., Nolan M. F., Lee K. et al. Orexin induce increased excitability and synchronization of rat sympathetic preganglionic neurons // J. Physiol.- 2003.- Vol. 549, Pt. 3.- P. 809-821.
  96. Trivedi P., Yu H., MacNeilD.J. et al. Distribution of orexin receptor mRNA in the rat brain // FEBS Letters.- 1998.- Vol. 438.- P. 71-75.
  97. Chen J., Randeva H. S. Genomic organization of mouse orexin receptors: characterization of two novel tissue-specific splice variants // Mol. Endocrinol.- 2004.- Vol. 18, № 11.- P. 2790-2804.
  98. Randeva H. S., Karteris E., Grammatopoulos D., Hillhouse E. W. Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals: implications for adrenal function and energy homeostasis // J. Clin. Endocrinol. Metabolism.- 2001.- Vol. 86, № 10 -P. 4808-4813.
  99. Steidl U., Bork S., Schaub S. et al. Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators // Blood.- 2004.- Vol. 104.- P. 81-88.
  100. De Lecea L., Kilduff T. S., Peyron C. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity // Proc Natl Acad Sci USA.- 1998.- Vol. 95.- P. 322-327.
  101. Sakurai S., Nishijima T., Takahashi S. et al. Low plasma orexin A levels were improved by continuous positive airway pressure treatment in patients with severe obstructive sleep apnea-hypopnea syndrome // Chest.- 2005.- Vol. 127.- P. 731-737.
  102. Peyron C., Tighe D. K., van den Pol A. N. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems // J. Neuroscience.- 1998.- Vol. 18, № 23.- P. 9996-10015.
  103. Shainidze K. Z., Novikova N. S. Immunoreactivity of Hypothalamic Orexin-Containing Neurons in Rats in Movement Restriction and Cooling // Neurosci. Behav. Physiol.- 2011.- Vol. 41, Iss. 2.- P. 213-221.
  104. Thakkar M. M., Winston S., McCarley R. W. Orexin-A containing lateral hypothalamic neurons project both in the cholinergic basal forebrain and subcoereleus pontine reticular formation: a retrograde tracing study // Sleep.- 2001.- Vol. A141.- P. 24.
  105. Chen C. Т., DunS. L., Kwok E. H. et al. Orexin A-like immunoreactivity in the rat brain // Neurosci. Lett.- 1999.- Vol. 260.- P. 161-164.
  106. Nambu T., Sakurai T., Mizukami K. et al. Distribution of orexin neurons in the adult rat brain // Brain Res.- 1999.- Vol. 827.- P. 243-260.
  107. Van den PolA. N. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord // J. Neurosci.- 1999.- Vol. 19, № 8.- P. 3171-3182.
  108. Date Y., Mondal M. S., Matsukura S. et al. Distribution of orexin/hypocretin in the rat median eminence and pituitary // Brain. Res. Mol. Brain. Res.- 2000.- Vol. 76.- P. 1-6.
  109. Larsen P. J., Hay-Schmidt A., Mikkelsen J. D. Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat // J. Comp. Neurol.-1994.- Vol. 342.- P. 299-319.
  110. Haj-Dahmane S., Shen R.-Y. The wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling // J. Neurosci.- 2005.- Vol. 25, № 4.- P. 896-905.
  111. Kummer M., Neidert S. J., Johren O., Dominiak P. Orexin (hypocretin) gene expression in rat ependymal cells // Neuroreport.- 2001.-Vol. 12.- P. 2117-2120.
  112. Kirchgessner A. L., Liu M.-L. Orexin synthesis and response in the gut // Neuron.- 1999.- Vol. 21, № 4.- P. 941-951.
  113. Naslund E., Ehrstrom M., Ma J. et al. Localization and effects of orexin on fasting motility in the rat duodenum // Am. J. Physiol. Gastrointest Liver Physiol.- 2002.- Vol. 282.- P. G470-G479.
  114. Becskei C., Riediger H., Hernadfalvy D. A. et al. Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake.// Brain. Behav. Immun. 2008.- Vol. 22, № 1.- P. 56-64.
  115. Perekrest S. V., Abramova T. V., Novikova N. S. et al. Changes in immunoreactivity of Orexin-A-Positive Neurons after an Intravenous Lipopolysaccharide injection // Medical Science Monitoring.- 2008.- Vol. 14, № 7.- Р. BR127-133.
  116. Perekrest S. V., Abramova T. V., Novikova N. S. Comparative analysis of the responses of orexin-containing neurons to administration of different doses of lipopolysaccharide // Neurosci. and Behav. Physiol.- 2011.- Vol. 41, Iss. 2.- P. 206-212.
  117. PerekrestS. V., Shainidze K.Z., Loskutov Yu. V. et al. Immunoreactivity of orexin-containing neurons in the hypothalamus and the level of expression of the preproorexin gene in these cells after administration of lipopolysaccharide // Neurosci. and Behav. Physiol.- 2013.- Vol. 43, Iss. 2.- P. 256-260.
  118. Ma X. С., Oliver J., Horvath E., Phelps C. P. Cytokine and adrenal axis responses to endotoxin // Brain Res.- 2000.- Vol. 861.-P. 135-142.
  119. Gaykema R. P. A., Daniels T. E., Shapiro N. J. et al. Immune challenge and satiety-related activation of both distinct and overlapping neuronal populations in the brainstem indicate parallel pathways for viscerosensory signaling // Brain Res.- 2009.- Vol. 19, № 1294.- P. 61-79.
  120. Wan W., Wetmore L., Sorenson C. M. Neural and biochemical mediators of toxin and stress-induced c-fos expression in the rat brain // Brain Res. Bull.- 1994.- Vol. 34.- P. 7-14.

Statistics

Views

Abstract - 158

PDF (Russian) - 3

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2013 Korneva E.A., Perekrest S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies