Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Cationic antimicrobial peptides (AMPs) of phagocytes and epithelial cells are the key effector molecules of the innate immune system, providing the anti-infective host defense. Besides the antimicrobial action AMPs exert a broad spectrum of varied effects towards host cells giving a ground for considering these peptides as possible biomodulatory molecules. The review outlines different types of the biological activity of structurally diverse AMPs, including those discovered by us in the leukocytes of animals (protegrins, bactenecins ChBac5, ChBac3.4). AMPs posses the potent antimicrobial and lipopolysaccharide-binding activity; some of them are cytotoxic for tumor and normal human cells in vitro, while others demonstrate the wound healing action. AMPs of the defensin family display the corticostatic activity: they inhibit stimulated by adrenocorticotropic hormone (ACTH) steroidogenesis in adrenal cells in vitro. We also showed that defensins and protegrin 3 abolish ACTH- or stress-induced increase of the corticosterone level in blood of experimental animals. Taken together, the described in the literature and our own data contribute to the idea that AMPs are the multifunctional molecules participating in the interaction between the innate and adaptive immune systems as well as between immune and neuroendocrine systems.

Full Text

Restricted Access

About the authors

O V Shamova

Institute of Experimental medicine NWB RAMS; St.-Petersburg State University

St.-Petersburg, Russia

D S Orlov

Institute of Experimental medicine NWB RAMS; St.-Petersburg State University

St.-Petersburg, Russia

V N Kokryakov

Institute of Experimental medicine NWB RAMS; St.-Petersburg State University

St.-Petersburg, Russia

E A Kornerva

Institute of Experimental medicine NWB RAMS; St.-Petersburg State University

St.-Petersburg, Russia
academic RAMS


  1. Пигаревский В. Е. Зернистые лейкоциты и их свойства.- М.: Медицина, 1978.- 128 с.
  2. Маянский А. Н., Маянский Д. Н. Очерки о нейтрофиле и макрофаге.- Новосибирск: Наука, 1989.- 344 с.
  3. Корнева Е. А. Введение в иммунофизиологию.- СПб.: ЭЛСБИ-СПб, 2003.- 48 с.
  4. Кокряков В. Н. Очерки о врожденном иммунитете.- СПб.: Наука, 2006.- 261 c.
  5. Черешнева М. В., Черешнев В. А. Иммунологические механизмы локального воспаления // Медицинская иммунология.- 2011.-Т. 13, № 6.- С. 557-568.
  6. Klebanoff S., Clark R. The neutrophil: function and clinical disorder.- Amsterdam: North Holland, 1978.- 810 p.
  7. Lehrer R., Lu W. а-Defensins in human innate immunity // Immunol. Rev.- 2012.- Vol. 245.- P. 84-112.
  8. Hancock R. E., Nijnik A., Philpott D. J. Modulating immunity as a therapy for bacterial infections // Nat Rev Microbiol.- 2012.- Vol. 10, №. 4.- P. 243-254.
  9. Lehrer R., Ganz T., Selsted M., Babior B. et al. Neutrophils and host defense // Ann Intern Med.- 1988.- Vol. 109, № 2.- P. 127-142.
  10. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms and partial cDNA sequence of a precursor // Proc. Nat. Acad. Sci. USA.- 1985.- Vol. 84.- P. 5449-5453.
  11. Boman H. G., Faye I., Gudmundsson G. H. et al. Cell-free immunity in Cecropia. A model system for antibacterial proteins // Eur. J. Biochem.- 1991.- Vol. 201.- P. 23-31.
  12. Lehrer R., Lichtenstein A., Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells // Annu. Rev. Immunol.- 1993.-Vol. 11.- P. 105-128.
  13. Ouellette A., Lualdi J. A novel mouse gene family coding for cationic, cysteine-rich peptides. Regulation in small intestine and cells of myeloid origin // J. Biol. Chem.- 1990.- Vol. 265.- P. 9831-9837.
  14. McCray P. Jr, Bentley L. Human airway epithelia express a beta-defensin // Am. J. Respir. Cell Mol. Biol.- 1997.- Vol. 16.- P. 343-349.
  15. Tang Y., Yuan J., Osapay G., Osapay K. et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins // Science.- 1999.- Vol. 5439.- P. 498-502.
  16. Leonova L., Kokryakov V., Aleshina G. et al. Circular minidefensins and posttranslational generation of molecular diversity // J. Leukoc. Biol.-2001.- Vol. 70.- P. 461-464.
  17. Zanetti M., Gennaro R., Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain // FEBS Lett.- 1995.- Vol. 374.- P. 1-5.
  18. Kopitar M., Ritonja A., Popovic T. et al. A new type of low-molecular mass cysteine proteinase inhibitor from pig leukocytes // Biol Chem Hoppe-Seyler.- 1989.- Vol. 370.- P. 1145-1151.
  19. Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity // J. of Leukocyte Biology.- 2004.- Vol. 75.- P. 39-47.
  20. Huang H., Ross C., Blecha F. Chemoattractant properties of PR-39, a neutrophil antibacterial peptide // J. Leukoc. Biol.- 1997.- Vol. 61.-P. 624-629.
  21. Biragyn A., Surenhu M., Yang D. et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens // J. Immunol.- 2001.- Vol. 167.- P. 6644-6653.
  22. Territo M., Ganz T., Selsted M., Lehrer R. Monocyte-chemotactic activity of defensins from human neutrophils // J. Clin. Invest.- 1989.-Vol. 84.- P. 2017-2020.
  23. Li J., Post M., Volk R. et al. PR39, a peptide regulator of angiogenesis // Nat. Med.- 2000.- Vol. 6.- P. 49-55.
  24. Tkachenko S., Kokryakov V., Ashmarin I., Kubatiev A. Antimicribial proteins of neutrophils as regulates of platelet activity // Int. J. Immunotherapy.- 1994.- Vol. 10.- P. 159-162.
  25. Hancock R., Chapple D. Peptide antibiotics // Antimicrobials Agents and Chemotherapy.- 1999.- Vol. 43.- P. 1317-1323.
  26. Perregaux D., Bhavsar K., Contillo L. et al. Antimicrobial peptides initiate IL-1 beta posttranslational processing: a novel role beyond innate immunity // J. Immunol.- 2002.- Vol. 168.- P. 3024-3032.
  27. Zhu Q., Hu K., Mulay S. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung // Proc. Natl. Acad. Sci. USA.- 1988.- Vol. 85.- P. 592-596.
  28. Jenssen H., Hamill P., Hancock R. Peptide Antimicrobial Agents // Clinical Microbiology Reviews.- 2006.- Vol.- 19. P. 491-511.
  29. Nijnik A., Hancock R. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections // Emerg. Health Threats J.- 2009.- Vol. 2.- e1.doi: 10.3134/ehtj.09.001.
  30. Mechkarska M., Ahmed E., Coquet L. et al. Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae) // Comp Biochem Physiol C Toxicol Pharmacol.- 2010.- Vol. 152, №. 4.- P. 467-472.
  31. Wang J., Wong E., Whitley J. et al. Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options // PLoS One.- 2011.- Vol. 6, № 8.- e24030.
  32. Kokryakov V., Harwig K., Panyutich E. et al. Protegrins: leicocyte amtimicrobial peptides combine features of corticostatic defensins and tachyplesins // FEBS Lett.- 1993.- Vol. 327.- P. 231-236.
  33. Shamova O., Orlov D., Stegemann C. et al. ChBac3. 4: A novel proline-rich antimicrobial peptide from goat leukocytes // International Journal of Peptide Research and Therapeutics.- 2009.- Vol. 15, № 1.- P. 31-35.
  34. Kragol G., Lovas S., Varadi G. et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding // Biochemistry.- 2001.- Vol. 40.- P. 3016-3026.
  35. Liu S., Zhou L., Lakshminarayanan R., Beuerman R. W. Multivalent Antimicrobial Peptides as Therapeutics: Design Principles and Structural Diversities // Int J Pept Res Ther.- 2010.- Vol. 16.- P. 199-213.
  36. Gennaro R., Zanetti M., Benincasa M. et al. Pro-rich Antimicrobial Peptides from Animals: Structure, Biological Functions and Mechanism of Action // Current Pharmaceutical Design.- 2002.- Vol. 8.- P. 763-778.
  37. Albrecht M. T., Wang W., Shamova O. et al. Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia // Respiratory Research.- 2002.- Vol. 3. № 1 (18).- http://respiratory-research. com/content/pdf/RR-3-1-18.
  38. Gunn J., McCoy A., Tran L. et al. Identification and characterization of Burkholderia cepacia mutants sensitive to antimicrobial peptides // abstr A92. p. 22 In Abstracts of the American Society for Microbiology: 101st General Meeting.- 2001.- abst. r A92:22.
  39. Lichtenstein A., Ganz T., Selsted M. E., Lehrer R. I. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes // Blood.- 1986.- Vol. 68.- P. 1407-1410.
  40. McKeown S., Lundy F., Nelson J. et al. The cytotoxic effects of human neutrophil peptide-1 (HNP-1) and lactoferrin on oral squamous cell carcinoma (OSCC) in vitro // Oral Oicol.- 2006.- Vol. 42.- P. 685-690.
  41. Okrent D., Lichtenstein A., Ganz T. Direct cytotoxicity of polymorphonuclear leukocyte granule proteins to human lung-derived cells and endothelial cells // Am Rev Respir Dis.- 1990.- Vol. 141, № 1.- P. 179-185.
  42. Radermacher S. W., Schoop V. M., Schluesener H. J. Bactenecin, a leukocytic antimicrobial peptide, is cytotoxic to neuronal and glial cells // J. Neurosci Res.- 1993.- Vol. 36, №. 6.- P. 657-662.
  43. Risso A., Braidot E., Sordano M. et al. BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore // Mol. Cell Biol.- 2002.- Vol. 22.- P. 1926-1935.
  44. Okumura K., Itoh A., Isogai E. et al. C-terminal domain of human CAP18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells // Cancer Lett.- 2004.- Vol. 212.- P. 185-194.
  45. Hui L., Leung K., Chen H. M. The combined effects of antibacterial peptide cecropin A and anti-cancer agents on leukemia cells // Anticancer Res.- 2002.- Vol. 22.- P. 2811-2816.
  46. Ghavami S., Asoodeh A., Klonisch T. et al. Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway // J. Cell. Mol. Med.- 2008.- Vol. 12.- P. 1005-1022.
  47. Lehmann J., Retz M., Sidhu S. et al. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines // Eur Urol.- 2006.- Vol. 50.- P. 141-147.
  48. Kaas Q., Westermann J., Henriques S. T., Craik D. J. Antimicrobial Peptides in Plants // In: Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies.- 2010.- 250 p.
  49. Al-Benna S., Shai Y., Jacobsen F., Steinstraesser L. Oncolytic activities of host defense peptides // Int. J. Mol. Sci.- 2011.- Vol. 12, № 11.-P. 8027-8051.
  50. Barlow P., Li Y., Wilkinson T., Bowdish D. et al. The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system // J. Leukoc. Biol.- 2006.- Vol. 80.- P. 509-520.
  51. Hoskin D., Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides // Biochim Biophys Acta.- 2008.- Vol. 1778.-P. 357-375.
  52. Nagaoka I., Suzuki K., Murakami T. et al. Evaluation of the effect of a-defensin human neutrophil peptides on neutrophil apoptosis // Int. J. Mol. Med.- 2010.- Vol. 26.- P. 925-934.
  53. Ramanathan B., Wu H., Ross C., Blecha F. PR-39, a porcine antimicrobial peptide, inhibits apoptosis: involvement of caspase-3 // Dev. Comp. Immunol.- 2004.- Vol. 28.- P. 163-169.
  54. Шамова О. В., Сакута Г. А, Орлов Д. С. и др. Действие антимикробных пептидов из нейтрофильных гранулоцитов на опухолевые и нормальные клетки в культуре // Цитология.- 2007.- Т. 49, № 12.- C. 1000-1010.
  55. Шамова О. В., Орлов Д. С., Пазина Т. Ю. и др. Изучение молекулярно-клеточных основ цитотоксического действия антимикробных пептидов на опухолевые клетки // Фундаментальные исследования.- 2012.- № 5 (часть 1).- С. 207-212.
  56. Panyutich A., Hiemstra P., van Wetering S., Ganz T. Human neutrophil defensin and serpins form complexes and inactivate each other // Am. J. Respir. Cell Mol. Biol.- 1995.- Vol. 12, № 3.- P. 351-357.
  57. Шамова О. В., Орлов Д. С., Ямщикова Е. В., Кокряков В. Н. Изучение взаимодействия антимикробных пептидов с белками из семейства ингибиторов сериновых протеиназ // Фундаментальные исследования.- 2011.- № 9.- C. 344-348.
  58. Шамова О. В., Орлов Д. С., Кокряков В. Н. Эффекты антимикробных пептидов нейтрофильных гранулоцитов на функциональную активность спленоцитов // Сборник тезисов III Международной научно-практической конференции «Новые концепции механизмов воспаления, аутоиммунного ответа и развития опухоли». 17-19 мая.-Казань, 2012.- C. 108-109.
  59. Murphy C., Foster B., Mannis M. et al. Defensins are mitogenic for epithelial cells and fibroblasts // J. Cell Physiol.- 1993.- Vol. 155.-P. 408-413.
  60. Otte J. M., Werner I., Brand S. et al. Human beta defensin 2 promotes intestinal wound healing in vitro // J. Cell Biochem.- 2008.- Vol. 104, № 6.- P. 2286-2297.
  61. Chan Y., Gallo R. PR-39, a syndecan-inducing antimicrobial peptide, binds and affects p130(Cas) // J. Biol. Chem.- 1998.- Vol. 273.-P. 28978-28985.
  62. Ямщикова Е. В., Орлов Д. С., Пазина Т. Ю. и др. Влияние антимикробного пептида бактенецина 5 и его укороченных фрагментов на пролиферацию фибробластов кожи человека, и на процесс заживления ран у экспериментальных животных // Современные проблемы науки и образования.- 2012.- № 3.- URL: www. science-education. ru/103-6127.
  63. Кудряшов Б. А., Ляпина Л. А., Мазинг Ю. А. и др. Действие дефенсина на процесс заживления асептической кожной раны и на проницаемость кровеносных сосудов // Бюл. экспер. биол. мед.- 1990.- Т. 59, № 4.- С. 391-393.
  64. Heilborn J. D., Nilsson M. F., Kratz G. et al. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium // J. Invest. Dermatol.- 2003.- Vol. 120.- P. 379-389.
  65. Yang D., Chen Q., Chertov O., Oppenheim J. J. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells // J. Leukoc Biol.- 2000.- Vol. 68.- P. 9-14.
  66. Yang D., Chertov O., Bykovskaia S. et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6 // Science.- 1999.- Vol. 286.- P. 525-528.
  67. Rohrl J., Yang D., Oppenheim J., Hehlgans T. Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2 // J. Immunol.- 2010.- Vol. 184.- P. 6688-6694.
  68. Chaly Y., Paleolog E., Kolesnikova T. et al. Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells // Eur. Cytokine Netw.- 2000.- Vol. 11.- P. 257-266.
  69. Niyonsaba F., Ushio H., Nakano N. et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines // J. Invest. Dermatol.- 2007.- Vol. 127, № 3.- P. 594-604.
  70. De Y., Chen Q., Schmidt A. P., Anderson G. et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells // J. Exp. Med.- 2000.-Vol. 192.- P. 1069-1074.
  71. Bowdish D., Davidson D., Lau Y. et al. Impact of LL-37 on anti-infective immunity // J. Leukoc. Biol.- 2005.- Vol. 77.- P. 451-459.
  72. Niyonsaba F., Someya A., Hirata M. et al. Evaluation of the effects of peptide antibiotics human beta-defensins- 1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells // Eur. J. Immunol.- 2001.- Vol. 31.- P. 1066-1075.
  73. Niyonsaba F., Iwabuchi K., Matsuda H. et al. Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway // Int. Immunol.- 2002.- Vol. 14.- P. 421-426.
  74. Yoshioka M., Fucuishi N., Kubo Y. et al. Human Cathelicidin CAP18/LL-37 Changes Mast Cell Function toward Innate Immunity // Biol. Pharm. Bull.- 2008.- Vol. 31, № 2.- P. 212-216.
  75. Lai Y., Gallo R. L. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense // Trends Immunol.- 2009.-Vol. 30.- P. 131-141.
  76. Wuerth K., Hancock R. E. W. New insights into cathelicidin modulation of adaptive Immunity // Eur. J. Immunol.- 2011.- Vol. 41.-P. 2817-2819.
  77. Davidson D. J., Currie A. J., Reid G. S. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization // J. of Immunology.- 2004.- Vol. 172, № 2.- P. 1146-1156.
  78. Presicce P., Giannelli S., Taddeo A. et al. Human defensins activate monocyte-derived dendritic cells, promote the production of proinflammatory cytokines, and up-regulate the surface expression of CD91 // J. Leukoc Biol.- 2009.- Vol. 86, № 4.- P. 941-948.
  79. Mookherjee N., Brown K., Bowdish D. et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37 // J. Immunol.- 2006.- Vol. 176, № 4.- P. 2455-2464.
  80. Solomon S. Corticostatins // Trends Endocrinol Metab.- 1993.- Vol. 4, № 8.- Р. 260-264.
  81. Tominaga T., Fukata J., Hayashi Y. et al. Distribution and characterization of immunoreactive corticostatin in the hypothalamic-pituitary-adrenal axis // Endocrinology.- 1992.- Vol. 130, № 3.- P. 1593-1598.
  82. Шамова О. В., Лесникова М. П., Кокряков В. Н. и др. ДеИствие дефенсинов на уровень кортикостерона в крови и иммунный ответ при стрессе // Бюл. экспер. биол. мед.- 1993.- Т. 115, № 6.- C. 646-649.
  83. Шамова О. В., Орлов Д. С., Лесникова М. П. и др. Отмена дефенсином иммуносупрессии, обусловленной стрессом или введением высоких доз гидрокортизона // Успехи физиол. наук.- 1995.- № 1.- С. 113-114.
  84. Фомичева Е. А., Пиванович И. Ю., Шамова О. В., Немирович-Данченко Е. А. Глюкокортикоидные гормоны в реализации иммуномодулирующего деИствия дефенсинов // РоссиИскиИ физиол. журн. им. Сеченова.- 2002.- Т. 88, № 4.- С. 496-502.
  85. Korneva E. A., Rybakina E. G., Kokryakov V. N. et al. Interleukin 1β and defensins in thermoregulation, stress and immunity // Annals of NY Acad. Sci.- 1997.- Vol. 81.- Р. 465-474.



Abstract - 136

PDF (Russian) - 1


Article Metrics

Metrics Loading ...




  • There are currently no refbacks.

Copyright (c) 2013 Shamova O.V., Orlov D.S., Kokryakov V.N., Kornerva E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies