PROTEIN GENE PRODUCT 9.5 (PGP 9.5) AS A FUNCTIONAL MARKER IN NEUROMORPHOLOGY

Open Access Open Access
Restricted Access Subscription Access

Abstract


The aim of this review is synthesis of the available published datas about protein gene product PGP 9.5 — one of the selective neural markers. This paper describes the history of its discovery, structure and properties. Presents datas demonstrating its application in experimental studies of the central and peripheral nervous system, and the possibility of use protein PGP 9.5 as a diagnostic marker in clinical pathomorphology.

D E Korzhevsky

Research Institute of Experimental Medicine, North-West Branch of the Russian Academy of Medical Sciences

Email: DEK2@yandex.ru

E A Kolos

Research Institute of Experimental Medicine, North-West Branch of the Russian Academy of Medical Sciences

  1. Коржевский Д.Э., Гилерович Е.Г., Зинькова Н.Н. и др. Иммуноцитохимическое выявление нейронов головного мозга с помощью селективного маркера NeuN // Морфология. — 2005. — Т. 128, № 5. — С. 76-78.
  2. Коржевский Д.Э., Петрова Е.С., Кирик О.В., Отеллин В.А. Оценка дифференцировки нейронов в эмбриогенезе крысы с использованием иммуноцитохимического выявления Даблкортина // Морфология. — 2008. — Т. 133, № 4. — С. 7-10.
  3. Коржевский Д.Э., Петрова Е.С., Кирик О.В. и др. Нейральные маркеры, используемые при изучении дифференцировки стволовых клеток // Клеточная трансплантология и тканевая инженерия. — 2010. — Т. 5, № 3. — С. 57-63.
  4. Дуданов И.П., Пигаревский П.В., Коржевский Д.Э. и др. Атеросклероз, сахарный диабет и автономная иннервация органов сердечно-сосудистой системы // Медицинский академический журнал. — 2012. — Т. 12, № 2. — С. 19-28.
  5. Чумасов Е.И., Ворончихин П.А., Коржевский Д.Э. Эфферентная иннервация сосудов и бронхов легкого крысы (иммуногистохимическое исследование) // Морфология. — 2012. — Т. 142, № 4. — С. 49-53.
  6. Петрова Е.С., Павлова Н.В., Коржевский Д.Э. Современные морфологические подходы к изучению регенерации периферических нервных проводников // Медицинский академический журнал. — 2012. — Т. 12, № 3. — С. 15-30.
  7. Jackson P., Thompson R.J. The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis // J. Neurol. Sci. — 1981. — Vol. 49, № 3. — P. 429-438.
  8. Anderson N.G., Anderson N.L. Analytical techniques for cell fractions. XXI. Two-dimensional analysis of serum and tissue proteins: multiple isoelectric focusing // Anal. Biochem. — 1978. — Vol. 85, № 2. — P. 331-340.
  9. Anderson N.L., Anderson N.G. Analytical techniques for cell fractions. XXII.Two-dimensional analysis of serum and tissue proteins: multiple gradient-slab gel electrophoresis // Anal. Biochem. — 1978. — Vol. 85, № 2. — P. 341-354.
  10. Anderson N.G., Anderson N.L. Molecular Anatomy // Behring Inst Mitt. — 1979. — Vol. 63. — P. 169-210.
  11. Doran J.F., Jackson P., Kynoch, P.A. et al. Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis // J. Neurochem. — 1983. — Vol. 40, № 6. — P. 1542-1547.
  12. Wilkinson K.D., Lee K.M., Deshpande S. et al. The neuron-speci c protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase // Science. — 1989. — Vol. 246, № 4930. — P. 670-673.
  13. Day I.N.M., Thompson R.J. UCHL1 (PGP 9.5): Neuronal biomarker and ubiquitin system protein // Prog Neurobiol. — 2010. — Vol. 90, № 3. — P. 327-362.
  14. Ventii K.H., Wilkinson K.D. Protein partners of deubiquitinating enzymes // Biochem J. — 2008. — Vol. 414, № 2. — Р. 161-175.
  15. Orr K.R., Shi Z., Brown W.M. et al. Potential prognostic marker ubiquitin carboxyl-terminal hydrolase-L1 does not predict patient survival in non-small cell lung carcinoma // J Exp Clin Cancer Res. — 2011. — Vol. 30. — P. 79-91.
  16. Liu Y., Fallon L., Lashuel H.A. et al. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility // Cell. — 2002. — Vol. 111, № 2. — P. 209-218.
  17. Osaka H., Wang Y.L., Takada K. et al. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron // Hum Mol Genet. — 2003. — Vol. 12, № 16. — P. 1945-1958.
  18. Volpicelli-Daley L.A., Luk K.C., Patel T.P. et al. Exogenous a-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death // Neuron. — 2011. — Vol. 72, № 1. — P. 57-71.
  19. Leroy E., Boyer R., Auburger G. et al. The ubiquitin pathway in Parkinson s disease // Nature. — 1998. — Vol. 395, № 6701. — P. 4451-4452.
  20. Lowe J., McDermott H., Landon M. et al. Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases // J. Pathol. — 1990. — Vol. 161, № 2. — P. 153-160.
  21. Cartier A.E., Djakovic S.N., Salehi A. et al. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1 // J. Neurosci. — 2009. — Vol. 29, № 24. — P. 7857-7868.
  22. Chen F., Sugiura Y., Myers K.G. et al. Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction // Proc. Natl. Acad. Sci. U S A. — 2010. — Vol. 107, № 4. — P. 1636—1641.
  23. Thompson R.J., Doran J.F., Jackson P. et al. PGP 9.5 — new marker for vertebrate neurons and neuroendocrine cells // Brain Res. — 1983. — Vol. 278, № 1-2. — P. 224-228.
  24. Wilson P.O., Barber P.C., Hamid Q.A. et al. The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies // Br.J. Exp. Pathol. — 1988. — Vol. 69, № 1. — P. 91-104.
  25. Thompson R.J., Day I.N. Protein Gene Product 9.5 — new marker for vertebrate neurones and neuroendocrine cells // Marangos P.J., Campbell I., Cohen R.M., ed. Neuronal and glial proteins — structure, function and clinical applications. — New York.: Academic Press, 1988. — P. 209-228.
  26. Lin W.M., Hsieh S.T., Huang I.T. et al. Ultrastructural Localization and regulation of protein gene product 9.5 // Neuroreport. — 1997. — Vol. 8, № 14. — P. 2999-3004.
  27. Liutkiene G., Stropus R., Pilmane M. et al. Age-related structural and neurochemical changes of the human superior cervical ganglion // Ann. Anat. — 2007. — Vol. 189, № 5. — P. 499-509.
  28. Calzada B., Naves F.J., Del Valle M.E. et al. Distribution of protein gene product 9.5 (PGP 9.5) immunoreactivity in the dorsal root ganglia of adult rat // Ann Anat. — 1994. — Vol. 176, № 5. — P. 437-441.
  29. Nakajima T., Murabayashi C., Ogawa K. et al. Immunoreactivity of protein gene product 9.5 (PGP 9.5) in the developing hamster olfactory bulb // Anat. Rec. — 1998. — Vol. 250, № 2. — P. 238-244.
  30. Horackova M., Armour J.A., Byczko Z. Distribution of intrinsic cardiac neurons in whole-mount guinea pig atria identified by multiple neurochemical coding. A confocal microscope study // Cell Tissue Res. — 1999. — Vol. 297, № 3. — P. 409-421.
  31. Gulbenkian S., Wharton J., Polak J.M. The visualisation of cardiovascular innervation in the guinea pig using an antiserum to protein gene product 9.5 (PGP 9.5) // J. Auton. Nerv. Syst. — 1987. — Vol. 18, № 3. — P. 235-247.
  32. Chow L.T., Chow S.S., Anderson R.H., Gosling J.A. Autonomic innervation of the human cardiac conduction system: changes from infancy to senility in immunohistochemical and histochemical analysis // Anat. Rec. — 2001. — Vol. 264, № 2. — P. 169-182.
  33. Fu C., Jasani B., Vujanic G.M. et al. The immunocytochemical demonstration of a relative lack of nerve.bres in the atrioventricular node and bundle of His in the sudden infant death syndrome (SIDS) // Forensic Sci Int. — 1994. — Vol. 66, № 3. — P. 175-185.
  34. Коржевский Д.Э., Сухорукова Е.Г., Петрова Е.С. и др. Применение иммуногистохимической реакции на белок PGP 9.5 для изучения иннервации сердца крысы и человека // Морфология. — 2013. — Т. 143, № 3. — С. 84-87.
  35. Чумасов Е.И., Петрова Е.С., Сухорукова Е.Г., Коржевский Д.Э. Распределение PGP 9.5-иммунопозитивных нервных волокон в сердце человека // Медицинский академический журнал. — 2013. — Т. 13, № 1. — С. 61-66.
  36. Чумасов Е.И., Майстренко Н.А., Петрова Е.С. и др. Морфологическое исследование поджелудочной железы при храническом панкреатите с использованием иммуногистохимических маркеров // Медицинский академический журнал. — 2013. — Т. 13, № 2. — С. 71-77.
  37. Anlauf M., Schafer M.K., Eiden L., Weihe E. Chemical coding of the human gastrointestinal nervous system:cholinergic, VIPergic, and catecholaminergic phenotypes // J. Comp. Neurol. — 2003. — Vol. 459, № 1. — P. 90-111.
  38. Nemeth L., Puri P. The innervation of human bowel mucosa and its alterations in Hirschsprungs disease using a whole-mount preparation technique // Pediatric Surgery Int. — 2000. — Vol. 16, № 4. — P. 277-281.
  39. Pilmane M., Ozolina L., Abola Z. et al. Growth factors, their receptors, neuropeptide-containing innervation, and matrix metalloproteinases in the proximal and distal ends of the esophagus in children with esophageal atresia // Medicina (Kaunas). — 2011. — Vol. 47, № 8. — P. 453-460.
  40. Takahashi T., Kakita A., Sakamoto I. et al. Immunohistochemical and electron microscopic study of extrinsic hepatic reinnervation following orthotopic liver transplantation in rats // Liver. — 2001. — Vol. 21, № 5. — P. 300-308.
  41. Grisk O., Grone H.J., Rose H.J., Rettig R. Sympathetic reinnervation of rat kidney grafts // Transplantation. — 2001. — Vol. 72, № 6. — P. 1153-1155.
  42. Tollet J., Everett A.W., Sparrow M.P. Spatial and temporal distribution of nerves, ganglia, and smooth muscle during the early pseudoglandular stage of fetal mouse lung development // Dev Dyn. — 2001. — Vol. 221, № 1. — P. 48-60.
  43. Karanth S.S. Ontogeny of nerves and neuropeptides in skin of rat: an immunocytochemical study // Exp. Dermatol. — 199. — Vol. 3, № 4. — P. 171-175.
  44. Oikawa T., Saito H., Taniguchi K., Taniguchi K. Immunohistochemical studies on the differential maturation of three types of olfactory organs in the rats // J. Vet. Med. Sci. — 2001. — Vol. 63, № 7. — P. 759-765.
  45. Jackman A., Fitzgerald M.J. Development of peripheral hindlimb and central spinal cord innervation by subpopulations of dorsal root ganglion cells in the embryonic rat // J. Comp. Neurol. — 2000. — Vol. 418, № 3. — P. 281-298.
  46. Lossi L., Ghidella S., Marroni P., Merighi A. The neurochemical maturation of the rabbit cerebellum // J. Anat. — 1995. — Vol. 187. — P. 709-722.
  47. Antunes S.L.G., Chimelli L.M., Rabello E.T. et al. An immunohistochemical, clinical and electroneuromyographic correlative study of the neural markers in the neuritic form of leprosy // Braz.J. Med. Biol. Res. — 2006. — Vol. 39, № 8. — P. 1071 -1081
  48. Halata Z., Grim M., Baumann K.I. The Merkel cell: morphology, developmental origin, function // Cas Lek Cesk. — 2003. — Vol. 142, № 1. — P. 4-9.
  49. Dalsgaard C.J., Rydh M., Haegerstrand A. Cutaneous innervation in man visualized with protein gene product 9.5 (PGP 9.5) antibodies // Histochemistry. — 1989. — Vol. 92, № 5. — P. 385-390.
  50. Tachibana T., Fujiwara N., Nawa T. Postnatal differentiation of Merkel cells in the rat palatine mucosa, with special reference to the timing of peripheral nerve development and the potency of cell mitosis // Anat Embryol (Berl). — 2000. — Vol. 202, № 5. — P. 359-367.
  51. Pintelon I., Brouns I., De Proost I. et al. Sensory receptors in the visceral pleura:neurochemical coding and live staining in whole mounts // Am.J. Respir. Cell. Mol. Biol. — 2007. — Vol. 36, № 5. — P. 541-551.
  52. Habash F.S., Hantash R.O., Yunis M.A. Assessment of the innervation pattern of oral squamous cell carcinoma using neural protein gene product (9.5)-An immunocytochemical study // J. Oral. Maxillofac Pathol. — 2012. — Vol. 16, № 1. — P. 16-21.
  53. Martin R., Fraile B., Peinado F. et al. Immunohistochemical localization of protein gene product 9.5, ubiquitin, and neuropeptide Y immunoreactivities in epithelial and neuroendocrine cells from normal and hyperplastic human prostate // J. Histochem Cytochem. — 2000. — Vol. 48, № 8. — P. 1121-1130.
  54. Lauweryns J.M., Van Ranst L. Protein gene product 9.5 expression in the lungs of humans and other mammals. Immunocytochemical detection in neuroepithelial bodies, neuroendocrine cells and nerves // Neurosci Lett. — 1988. — Vol. 85, № 3. — P. 311-316.
  55. Rode J., Dhillon A.P., Doran J.F. et al. PGP 9.5, a new marker for human neuroendocrine tumours // Histopathology. — 1985. — Vol. 9, № 2. — P. 147-158.
  56. Gosney J.R., Gosney M.A., Lye M. et al. Reliability of commercially available immunocytochemical markers for identification of neuroendocrine differentiation in bronchoscopic biopsies of bronchial carcinoma // Thorax. — 1995. — Vol. 50, № 2. — P. 116-120.
  57. Kasprzak A., Zabel M., Biczysko W. Selected markers (chromogranin A, neuron-specific enolase, synaptophysin, protein gene product 9.5) in diagnosis and prognosis of neuroendocrine pulmonary tumours // Pol. J. Pathol. — 2007. — Vol. 58, № 1. — P. 23-33.
  58. Howell V.M., Gill A., Clarkson A. et al. Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma // J. Clin. Endocrinol Metab. — 2009. — Vol. 94, № 2. — P. 434-441.
  59. Tezel E., Hibi K., Nagasaka T., Nakao A. PGP 9.5 as a prognostic factor in pancreatic cancer // Clin. Cancer Res. — 2000. — Vol. 6, № 12. — P. 4764-4767.
  60. Yamazaki T., Hibi K., Takase T. et al. PGP9.5 as a marker for invasive colorectal cancer // Clin. Cancer Res. — 2002. — Vol. 8, № 1. — P. 192-195.

Views

Abstract - 52

PDF (Russian) - 0

Cited-By


PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2013 Korzhevsky D.E., Kolos E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies