The role of immune and glial cells in neurodegenerative processes

Abstract


The modem conceptualization on role of immune and glial cells in the inflammation mechanisms, excitotoxicity and oxidative stress leading to development of neurodegeneration is considered. The ambivalent role of those cells is emphasized in axonal/neuronal and olygodendrocites injury as well as their involvement into reparative/regenerative processes.

I N Abdurasulova

Institute of Experimental Medicine NWB RAMS, St. Petersburg

V M Klimenko

Institute of Experimental Medicine NWB RAMS, St. Petersburg

Email: klimenko victor@mail.ru

  1. Абдурасулова И.Н., Клименко В.М. Гетерогенность механизмов повреждения нервных клеток при демиелинизирующих аутоиммунных заболеваниях ЦИС // Рос. физиол. журн. им. Сеченова. 2010. Т. 96. № 1.С. 50-68.
  2. Aktas О., Smorodchenko A., Brocke S. et al. Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL//Neuron. 2005. Vol. 46 (3). P.421-432.
  3. Allan S.M., Rothwell N.J. Cytokines and acute neurodegeneration // Nat. Rev. Neurosci. 2001. Vol. 2. P. 734-744.
  4. Allan S.M., Tyrrell P.J., Rothwell N.J. Interleukin-1 and neuronal injury // Nat. Rev. Immunol. 2005. ѴЫ. 5 (8). P. 629-640.
  5. Allan S.M. The role of pro- and antiinflammatory cytokines in neurodegeneration // Ann. N. Y. Acad. Sci. 2000. Vol. 917. P. 84-93.
  6. Aloisi F. Immune function of microglia // Glia. 2001b. Vol. 36. P. 165-179.
  7. Aloisi F., De Simone R., Columba-Cabezas S. et al. Opposite effects of interferon-y and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro- and antiinflammatory activities // J. Neurosci. Res. 1999. Vol. 56. P. 571-580.
  8. Alt C., Laschinger M., Engelhardt B. Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL21 (SLC) at the blood-brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis // Eur. J. Immunol. 2002. Vol. 32 (8). P. 2133-2144.
  9. Ambrosini E., Aloisi F. Chemokines and glial cells: a complex network in the central nervous system // Neurocherm Res. 2004. Vol. 29. P. 1017-1038.
  10. Andersson P.B., Perry V.H., Gordon S. Intracerebral injection of proinflammatory cytokines or leukocyte chemotaxins induces minimal myelomonocytic cell recruitment to the parenchyma of the central nervous system // J. Exp. Med. 1992. Vol. 176. P. 255-259.
  11. Anthony D.C., Bolton S.J., Feam S., Perry V.H. Age- related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood-brain barrier permeability in rats // Brain. 1997. Vol. 120. P. 435-444.
  12. Balashov K.E., Rottman J.B., Weiner H.L., Hancock W.W. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands МІР-la and IP- 10 are expressed in demyelinating brain lesions // Proc. Natl. Acad. Sci. USA. 1999. Vol. 96. P. 6873-6878.
  13. Bao F., Chen Y., Dekaban G.A., Weaver L.C. Early anti-inflammatory treatment reduces lipid peroxidation and protein nitration after spinal cord injury in rats // J. Neurochem. 2004. Vol. 8 (6). P. 1335-1344.
  14. Bao F., Dekaban G.A., Weaver L.C. Anti-CD 1 Id antibody treatment reduces free radical fonnation and cell death in the injured spinal cord of rats // J. Neurochem. 2005. Vol. 94 (5). P. 1361-1373.
  15. Barger S.W., Moennan A.M., Мао X. Molecular mechanisms of cytokine-induced neuroprotection: NF kappa В and neuroplasticity // Curr. Pharm. Des. 2005. Vol. 11 (8). P. 985-998.
  16. Benveniste E.N. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis//J. Mol. Med. 1997. Vol. 75. P. 165-173.
  17. Bethea J.R. Spinal cord injury-induced inflammation: a dual-edged sword // Prog. Brain Res. 2000. Vol. 128. P. 33-42.
  18. Bethea J.R., Castro M., Keane R.W. et al. Traumatic spinal cord injury induces nuclear factor-kappaB activation//J. Neurosci. 1998. Vol. 18 (9). P. 3251-3260.
  19. Blight A.R. Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury // Cent. Nerv. Syst. Trauma. 1985. Vol. 2 (4). P. 299-315.
  20. Boyles J.K., Zoellner C.D., Anderson L.J. et al. A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve Hi. Clin. Invest. 1989. Vol. 83 (3). P. 1015-1031.
  21. Brogi A., Strazza M., Melli M., Costantino-Ceccarini E. Induction of intracellular ceramide by interleukin- 1 beta in oligodendrocytes // J. Cell Biochem. 1997. Vol. 66(4). P.532-541.
  22. Bruce-Keller A. Microglial-neuronal interactions in synaptic damage and recovery // J. Neurosci. Res. 1999. Vol. 58(1). P 191-201.
  23. Cai D., Shen Y., De Bellard M. et al. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism//Neuron. 1999. Vol. 22 (1). P. 89-101.
  24. Cai D., Qiu J., Cao Z. et al. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate//J. Neurosci. 2001. Vol. 21 (13). P.4731- 4739.
  25. Campbell S.J., Wilcockson D.C., Butchart A.G. et al. Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1 beta-induced neutrophil recruitment // J. Neurochem. 2002. Vol. 83 (2). P. 432-241.
  26. Chao C.C., Hu S., Peterson P.K. Modulation of human microglial cell superoxide production by cytokines // J. Leukoc. Biol. 1995. Vol. 58. P. 65-70.
  27. Chavarria A., Alcocer-Varela J. Is damage in central nervous system due to inflammation? // Autoimmun. Rev. 2004. Vol. 3 (4). P. 251-260.
  28. Cheepsunthom P, Palmer C., Connor J.R. Cellular distribution of ferritin subunits in postnatal rat brain // J. Comp. Neurol. 1998. Vol. 400 (1). P. 73-86.
  29. Cheng B., Christakos S., Mattson M.P. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis//Neuron. 1994. Vol. 12(1). P. 139-153.
  30. Colton C.A., Gilbert D.L. Production of superoxide anions by a CNS macrophage, the microglia // FEBS Let-. ters. 1987. Vol. 223 (2). P. 284-288.
  31. Compston A., Coles A. Multiple sclerosis // Lancet. 2002. Vol. 359 (9313). P. 1221-1231.
  32. Connor J.R., Menzies S.L. Relationship of iron to oligodendrocytes and myelination // Glia. 1996. Vol. 17 (2). P. 83-93.
  33. Dai X., Lercher L.D., Clinton PM. et al. The trophic role of oligodendrocytes in the basal forebrain // J. Neurosci. 2003. Vol. 23 (13). P. 5846-5853.
  34. David S., Bouchard C., Tsatas O., Giftochristos N. Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system // Neuron. 1990. Vol. 5 (4). P. 463-469.
  35. Del Rio L., Bennouna S., Salinas J., Denkers E.Y. CXCR2 deficiency confers impaired neutrophylic recruitment and increased susceptibility during Toxoplasma gondii infection // J. Immunol. 2001. Vol. 167. P. 6503-6509.
  36. Dewar D., Underhill S.M., Goldberg M.P. Oligodendrocytes and ischemic brain injury // J. Cereb. Blood Flow Metab. 2003. Vol. 23 (3). P. 263-274.
  37. Dong Y., Benveniste E.N. Immune function of astrocytes//Glia. 2001. Vol. 36(2). P. 180-190.
  38. Donnelly D.J., Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injuiy // Exp. Neurol. 2008. Vol. 209 (2). P. 378-388.
  39. Duffy S., Mac Vicar B.A. Adrenergic calcium signaling in astrocyte networks within the hippocampal slice // J. Neurosci. 1995. Vol. 15 (8). P. 5535-5550.
  40. Dusart I., Schwab M.E. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord // Eur. J. Neurosci. 1994. Vol. 6 (5). P. 712-724.
  41. Dutta R., McDonough J., Chang A. et al. Activation of the ciliary neurotrophic factor (CNTF) signalling pathway in cortical neurons of multiple sclerosis patients // Brain. 2007. Vol. 130 (Pt. 10). P. 2566-2576.
  42. Edgar J.M., McLaughlin M., Yool D. et al. Oligoden- droglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia // J. Cell Biol. 2004. Vol. 166(1). P. 121-131.
  43. Ekdahl C.T., Claasen J.H., Bonde S., Kokaia Z., Lind- vall O. Inflammation is detrimental for neurogenesis in adult brain // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100 (23). P. 13632-13637.
  44. Eriksson C., Zou L.P., Ahlenius S. et al. Inhibition of kainic acid induced expression of interleukin-1 beta and interleukin-1 receptor antagonist mRNA in the rat brain by NMD A receptor antagonists // Brain Res. Mol. Brain Res. 2000. Vol. 85 (1-2). P. 103-113.
  45. Ferrari C.C., Depino A.M., Prada F. et al. Reversible demyelination, blood-brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic IL-1 expression in the brain //Am. J. Pathol. 2004. Vol. 165 (5). P. 1827-1837.
  46. Furukawa K., Mattson M.P. The transcription factor NF-kappa В mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons // J. Neurochem. 1998. Vol. 70 (5). P. 1876-1886.
  47. Gao X., Gillig T.A., Ye P. et al. Interferon-gamma protects against cuprizone-induced demyelination // Mol. Cell Neurosci. 2000. Vol. 16 (4). P. 338-349.
  48. Garcia J.H., Liu K.F., Relton J.K. Interleukin-1 receptor antagonist decreases the number of necrotic neurons in rats with middle cerebral artery occlusion // Am. J. Pathol. 1995. Vol. 147. P. 1477-1486.
  49. Girod R., Povov S., Alder J. et al. Spontaneous quan- tal transmitter secretion from myocytes and fibroblasts: comparison with neuronal secretion // J. Neurosci. 1995. Vol. 15 (4). P. 2826-2838.
  50. Ghimikar R.S., Lee Y.L., Li J.D., Eng L.F. Chemokine inhibition in rat stab wound brain injury using antisense oligodeoxynucleotides//Neurosci. Lett. 1998. Vol. 247(1). P. 21-24.
  51. Ghimikar R.S., Lee Y.L., Eng L.F. Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat // J. Neurosci. Res. 2000. Vol. 59 (1). P. 63-73.
  52. Ghimikar R.S., Lee Y.L., Eng L.F. Chemokine antagonist infusion promotes axonal sparing after spinal cord contusion injury in rat // J. Neurosci. Res. 2001. Vol. 64 (6). P. 582-589.
  53. Gonzalez R., Hickey M.J., Espinosa J.M. Therapeutic neutralization of CXCL10 decreases secondary degeneration and functional deficit after spinal cord injury in mice // Regen. Med. 2007. Vol. 2 (5). P. 771-783.
  54. Granger D.N. Cell adhesion and migration. II. Leukocyte-endothelial cell adhesion in the digestive system //Am. J. Physiol. 1997. Vol. 273 (5 Pt. 1). G982-986.
  55. Grau G.E., Lou J. TNF in vascular pathology: the importance of platelet-endothelial interactions // Res. Immunol. 1993. Vol. 144. P. 355-363.
  56. Griffiths I., Klugmann M., Anderson T. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin // Science. 1998. ѴЫ. 280 (5369). P. 1610-1613.
  57. Gris D., Marsh D.R., Oatway M.A. et al. Transient blockade of the CD 11 d/CD 18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function // J. Neurosci. 2004. Vol. 24(16). P 4043-4051.
  58. Gruol D.L., Nelson T.E. Physiological and pathological roles of interleukin-6 in the central nervous system //Mol. Neurobiol. 1997. Vol. 15 (3). P. 307-339.
  59. Gu C., Casaccia-Bonnefil P, Srinivasan A., Chao M.V. Oligodendrocyte apoptosis mediated by caspase activation//J. Neurosci. 1999. Vol. 19 (8). P. 3043-3049.
  60. Hamada Y., Ikata T., Katoh S. et al. Involvement of an intercellular adhesion molecule 1 -dependent pathway in the pathogenesis of secondary changes after spinal cord injury in rats // J. Neurochem. 1996. Vol. 66 (4). P. 1525-1531.
  61. Hanisch U.K., Lyons S.A., Prinz M. et al. Mouse brain microglia express interleukin-15 and its multimeric receptor complex functionally coupled to Janus kinase activity // J. Biol. Chem. 1997. Vol. 272.P. 28853- 28860.
  62. Hu S., Chao C.C., Khanna K.V. et al. Cytokine and free radical production by porcine microglia // Clin. Immunol. Immunopathol. 1996. ѴЫ. 78.P. 93-96.
  63. Hurwitz A.A., Lyman W.D., Berman J.W. Tumor necrosis factor a and transforming growth factor b up- regulate astrocyte expression of monocyte chemoattractant protein-1 // J. Neuroimmunol. 1995. Vol. 57. P. 193-198.
  64. Husain J., Juurlink B.H. Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species // Brain Res. 1995. Vol. 698 (1-2).P. 86-94.
  65. Huseby E.S., Liggitt D., Brabb T. et al. A pathogenic role for myelinspecific CD8(+) T cells in a model for multiple sclerosis // J. Exp. Med. 2001. Vol. 194. P. 669-676.
  66. Imamura K., Suzumura A., Sawada M. et al. Induction of MHC class II antigen expression on murine microglia by interleukin-3 // J. Neuroimmunol. 1994. Vol. 55. P 119-125.
  67. Ishizuka K., Kimura T., Igatayi R. et al. Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease // Psychiatry Clin. Neurosci. 1997. Vol. 51.P. 135- 138.
  68. Jana A., Pahan K. Oxidative stress kills human primary oligodendrocytes via neutral sphingomyelinase: implications for multiple sclerosis // J. Neuroimmune Pharmacol. 2007. Vol. 2 (2). P 184-193.
  69. Jones L.L., Tuszynski M.H. Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors // J. Neurosci. 2002. Vol. 22 (11). P 4611-4624.
  70. Jones T.B., Hart R.P., Popovich P.G. Molecular control of physiological and pathological T-cell recruitment after mouse spinal cord injury // J. Neurosci. 2005. Vol. 25 (28).P. 6576-6583.
  71. Karadottir R., Cavelier P, Bergersen L.H., Attwell D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia // Nature. 2005. Vol. 438 (7071). P. 1162-1166.
  72. Karman J., Ling C., Sandor M., Fabry Z. Initiation of immune responses in brain is promoted by local dendritic cells // J. Immunol. 2004. Vol. 173 (4). P. 2353- 2361.
  73. Kassmann C.M., Lappe-Siefke C., Baes M. et al. Axonal loss and neuroinflammation caused by peroxisome- deficient oligodendrocytes //Nat. Genet. 2007. Vol. 39 (8). P. 969-976.
  74. Kassmann C.M., Nave K.A. Oligodendroglial impact on axonal function and survival - a hypothesis // Curr. Opin. Neurol. 2008. Vol. 21 (3).P. 235-241.
  75. De Keyser J., Zeinstra E., Mostert J., Wilczak N. Beta 2-adrenoceptor involvement in inflammatory demye- lination and axonal degeneration in multiple sclerosis //Trends Pharmacol. Sci. 2004. ѴЫ. 25 (2). P. 67-71.
  76. Kigerl K.A., McGaughy V.M., Popovich P.G. Comparative analysis of lesion development and intraspi- nal inflammation in four strains of mice following spinal contusion injury // J. Comp. Neurol. 2006. Vol. 494 (4). P. 578-594.
  77. Kipnis J., Mizrahi T., Hauben E. et al. Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99 (24). P. 15620-15625.
  78. Kirkpatrick L.L., Witt A.S., Payne H.R. et al. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons // J. Neurosci. 2001. Vol. 21 (7). P. 2288-2297.
  79. Klinkcrt W.E.F., Kojima К., Lesslauer W. ct al. TNF- a receptor fusion protein prevents experimental autoimmune encephalomyelitis and demyelination in Lewis rats: an overview // J. Neuroimmunol. 1994. Vol. 72. P. 163-168.
  80. Kohji T., Matsumoto Y. Coexpression of Fas/FasL and Bax on brain and infiltrating T cells in the central nervous system is closely associated with apoptotic cell death during autoimmune encephalomyelitis Hi. Neuroimmunol. 2000. ѴЫ. 106. P. 165-171.
  81. Krakowski M.L., Owens T. The central nervous system environment controls effector CD4+ T cell cytokine profile in experimental allergic encephalomyelitis // Eur. J. Immunol. 1997. Vol. 27. P. 2840-2847.
  82. Kreutzberg G.W. Microglia: a sensor for pathological events in the CNS // Trends Neurosci. 1996. Vol. 19(8). P.312-318.
  83. Lappe-Siefke C., Goebbels S., Gravel M. et al. Disruption of Cnpl uncouples oligodendroglial functions in axonal support and myelination // Nat. Genet. 2003. Vol. 33 (3). P. 366-374.
  84. Larocca J.N., Farooq M., NortonW.T. Induction of oligodendrocyte apoptosis by C2-ceramide // Neuro- chem. Res. 1997. Vol. 22 (4). P 529-534.
  85. Lassmann H., Suchanek G., Kitz K. et al. Antibodies in the pathogenesis of demyelination in chronic relapsing EAE (cr-EAE) // Prog. Clin. Biol. Res. 1984. Vol. 146. P. 165-170.
  86. Lee Y.L., Shih K., Bao P. et al. Cytokine chemokine expression in contused rat spinal cord // Neurochem. Int. 2000. Vol. 36 (4-5). P. 417-425.
  87. Lee J.T., Xu J., Lee J.M., et al. Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway // J. Cell Biol. 2004. Vol. 164(1). P. 123-131.
  88. Leskovar A., Moriarty L.J. Turek J.J. et al. The macrophage in acute neural injury: changes in cell numbers over time and levels of cytokine production in mammalian central and peripheral nervous systems // J. Exp. Biol. 2000. Vol. 203 (Pt. 12). P. 1783-1795.
  89. Liu D., Liu J., Sun D. et al. Spinal cord injury increases iron levels: catalytic production of hydroxyl radicals // Free Radic. Biol. Med. 2003. Vol. 34 (1). P 64-71.
  90. Lobb R.R., Hemler M.E. The pathophysilogic role of a4 integrins in vivo // J. Clin. Invest. 1994. Vol. 94 (5). P. 1722-1728.
  91. Loddick S.A., Wong M.L., Bongiomo P.B. et al. Endogenous interleukin-1 receptor antagonist is neuro- protective//Biochem. Biophys. Res. Commun. 1997. Vol. 234. P.211-215.
  92. Lodge P.A., Sriram S. Regulation of microglial activation by TGF-P, IL-10, and CSF-1 Hi. Leukoc. Biol. 1996. Vol. 60. P 502-508.
  93. Lucas S.M., Rothwell N.J., Gibson R.M. The role of inflammation in CNS injury and disease // Br. J. Pharmacol. 2006. Vol. 147 (Suppl. 1). P. S232-S240.
  94. Mabon P.J., Weaver L.C., Dekaban G.A. Inhibition of monocyte/macrophage migration to a spinal cord injury site by an antibody to the integrin alphaD: a potential new anti-inflammatory treatment // Exp. Neurol. 2000. Vol. 166 (1). P 52-64.
  95. Madana I., Martinic M.A., Wekerle H., Neumann H. Transection of major histocompatibility complex class I-induced neuritis by cytotoxic T lymphocytes //Am. J. Pathol. 2001. Vol. 159. P 809-815.
  96. Mason J.L., Suzuki K., Chaplin D.D., Matsushima G.K. Interleukin-1 beta promotes repair of the CNS // J. Neurosci. 2001. Vol. 21. P. 7046-7052.
  97. Mastronardi F.G., Ackerley C.A., Arsenault L. et al. Demyelination in a transgenic mouse: a model for multiple sclerosis // J. Neurosci. Res. 1993. ѴЫ. 36 (3).P 315-324.
  98. Mattson M.P Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders // Neuromolecu- larMed. 2003. Vol. 3 (2). P. 65-94.
  99. Matute C., Alberdi E., Ibarretxe G., Sanchez-Gomez M.V. Excitotoxicity in glial cells // Eur. J. Pharmacol. 2002. Vol. 447 (2-3). P. 239-246.
  100. Matute C., Torre I., Perez-Cerda F. et al. P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis // J. Neurosci. 2007. Vol. 27 (35). P. 9525-9533.
  101. McTigue D.M., Popovich P.G., Jakeman L.B., Stokes B.T. Strategies for spinal cord injury repair // Prog. Brain Res. 2000. Vol. 128. P. 3-8.
  102. McTigue D.M., Tani M., Krivacic K. et al. Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury // J. Neurosci. Res. 1998. Vol. 53 (3). P. 368-376.
  103. Meme W., Calvo C.F., Froger N. et al. Proinflam- matory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by (3-amyloid // FASEB J. 2006. Vol. 20. P. 494-496.
  104. Mikami Y., Okano H., Sakaguchi M. et al. Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progen- itor cells leading to de novo neurogenesis and functional recovery // J. Neurosci. Res. 2004. ѴЫ. 76 (4). P. 453-465.
  105. Minagar A., Shapshak P, Fujimura R. et al. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis // J. Neurol. Sci. 2002. Vol. 202 (1-2). P. 13-23.
  106. Mitrasinovic O.M., Vincent V.A., Simsek D., Murphy G.M. Macrophage colony stimulating factor promotes phagocytosis by murine microglia // Neurosci. Lett. 2003. Vol. 344. P. 185-188.
  107. Moller J.R., Jonson D., Brady R.O. et al. Antibodies to myelin-associated glycoprotein (MAG) in the ce- rebralfluid of multiple sclerosis patients // J. Neuroimmunol. 1989. Vol. 22. P. 55-61.
  108. Morales А., Lee Н., Goni F.M. et al. Sphingolipids and cell death //Apoptosis. 2007. Vol. 12 (5). P. 923- 939.
  109. Мого M. A., Cardenas A., Hurtado O. et al. Role of nitric oxide after brain ischaemia // Cell Calcium. 2004. Vol. 36. P. 265-275.
  110. Mouzannar R., Miric S.J., Wiggins R.C., Konat G. W. Hydrogen peroxide induces rapid digestion of oligodendrocyte chromatin into high molecular weight fragments // Neurochem. Int. 2001. Vol. 38 (1). P. 9- 15.
  111. Nakamura Y. Regulating factors for microglial activation // Biol. Pharm. Bull. 2002. Vol. 25. P. 945-953.
  112. Nedergaard M., Ransom B., Goldman S.A. New roles for astrocytes: redefining the functional architecture of the brain //Trends Neurosci. 2003. Vol. 26 (10). P. 523-530.
  113. Neumann H. Molecular mechanisms of axonal damage in inflammatory central nervous system diseases // Curr. Opin. Neurol. 2003. Vol. 16 (3). P. 267-273.
  114. Nguyen K.B., Pender M.P. Phagocytosis of apoptot- ic lymphocytes by oligodendrocytes in experimental autoimmune encephalomyelitis //Acta Neuropathol. 1998. Vol. 95. P. 40^16.
  115. Noble L.J., Donovan F., Igarashi T. et al. Matrix metal loproteinases limit functional recovery after spinal cord injury by modulation of early vascular events // J. Neurosci. 2002. Vol. 22 (17). P. 7526-7535.
  116. Orellana J.A., Saez P.J., Shoji K.F. et al. Modulation of brain hemichannels and Gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration //Antioxid. Redox. Signal. 2009. Vol. 11 (2). P. 369-399.
  117. Ott M., Gogvadze V, Orrenius S., Zhivotovsky B. Mitochondria, oxidative stress and cell death //Apoptosis. 2007. Vol. 12 (5). P. 913-922.
  118. Palin K., Pousset F., Verrier D. et al. Characterization of interleukin-1 receptor antagonist isoform expression in the brain of lipopolysaccharide-treated rats // Neuroscience. 2001. ѴЫ. 103. P. 161-169.
  119. Park E., Velumian A.A., Fehlings M.G. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration // J. Neurotrauma. 2004. Vol. 21 (6). P. 754-774.
  120. Parpura V, Basarasky T.A., Liu F. et al. Glutamate- mediated astrocyte-neuron signaling //Nature. 1994. Vol. 369 (6483). P. 744-747.
  121. Patneau D.K., Wright P.W., Winters C. et al. Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptors // Neuron. 1994. Vol. 12 (2). P. 357-371.
  122. Pinholt M., Frederiksen J.L., Andersen P.S., Christiansen M. Apo E in multiple sclerosis and optic neuritis: the apo E-epsilon4 allele is associated with progression of multiple sclerosis // Mult. Scler. 2005. Vol. 11 (5). P.511-515.
  123. Pitt D., Werner P., Raine C.S. Glutamate excitotoxicity in a model of multiple sclerosis // Nat. Med. 2000. Vol. 6 (1). P. 67-70.
  124. Popivanova B.K., Koike K., Tonchev A.B. et al. Accumulation of microglial cells expressing ELR motifpositive CXC chemokines and their receptor CXCR2 in monkey hippocampus after ischemia-reperfusion // Brain Res. 2003. Vol. 970. P. 195-204.
  125. Popovich P.G., Stokes B.T., Whitacre C.C. Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system // J. Neurosci. Res. 1996. Vol. 45 (4). P. 349-363.
  126. Popovich P.G., Wei R, Stokes B.T. Cellular inflammatory response after spinal cord injury in Sprague- Dawley and Lewis rats // J. Comp. Neurol. 1997. Vol. 377 (3). P. 443^164.
  127. Popovich P.G. Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord// Prog. Brain Res. 2000. Vol. 128. P. 43-58.
  128. Prinz M., Hanisch U.K. Murine microglial cells produce and respond to interleukin-18 // J. Neurochem. 1999. Vol. 72. P.2215-2218.
  129. Reindl M., Linington C. Brehm U. et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological disease: a comparative study // Brain. 1999. Vol. 122. P. 2047-2056.
  130. Rezaie P., Male D. Colonization of the developing human brain and spinal cord by microglia: a review // Microsc. Res. Tech. 1999. Vol. 45. P. 359-382.
  131. Reynolds I.J., Hastings T.G. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation//J. Neurosci. 1995. ѴЫ. 15 (Pt. 1). P. 3318- 3327.
  132. Ridet J.L., Malhotra S.K., Privat A., Gage F.H. Reactive astrocytes: cellular and molecular cues to biological function // Trends Neurosci. 1997. ѴЫ. 20 (12). P. 570-577.
  133. Rouach N., Avignone E., Meme W. et al. Gap junctions and connexin expression in the normal and pathological central nervous system // Biol. Cell. 2002. Vol. 94 (7-8). P. 457-475.
  134. Ruddle N.H., Bergman C.M., McGrath K.M. et al. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis//J. Exp. Med. 1990. Vol. 172. P. 1193- 1200.
  135. Sallusto F., Lanzavecchia A., Mackay C.R. Chemokines and chemokine receptors in T-cell priming and Thl/Th2-mediated responses // Immunol. Today. 1998. Vol. 19(12). P. 568-574.
  136. Sallusto F., Mackay C.R., Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses // Annu. Rev. Immunol. 2000. Vol. 18. P. 593-620.
  137. Salter M.G., Fern R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury // Nature. 2005. Vol. 438 (7071). P. 1167- 1171.
  138. Santiago E., Perez-Mediavilla L.A., Lopez-Mo- ratalla N. The role of nitric oxide in the pathogenesis of multiple sclerosis Hi. Physiol. Biochem. 1998. Vol. 54 (4). P. 229-237.
  139. Sasaki N., Higashi N., Taka T. et al. Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate // J. Immunol. 2004. Vol. 172. P. 3830-3835.
  140. Satoh J.-I., Kastrukoff L.F., Kim S.U. Cytokine-induced expression of intercellular adhesion inolecule- 1 (ICAM-1) in cultured human oligodendrocytes and astrocytes // J. Neuropathol. Exp. Neurol. 1991. Vol. 50. P. 215-226.
  141. Schenck M., Carpinteiro A., Grassme H. et al. Ce- ramide: physiological and pathophysiological aspects // Arch. Biochem. Biophys. 2007. ѴЫ. 462 (2). P. 171-175.
  142. Schmalenbach C., Muller H.W. Astroglia-neuron interactions that promote long-term neuronal survival // J. Chem. Neuroanat. 1993. Vol. 6 (4). P. 229-237.
  143. Schnell L., Feam S., Klassen H. et al. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord // Eur. J. Neurosci. 1999. Vol. 11 (10). P. 3648-3658.
  144. Schnell L., Schneider R., Berman M.A. et al. Lymphocyte recruitment following spinal cord injury in mice is altered by prior viral exposure // Eur. J. Neurosci. 1997. Vol. 9 (5). P. 1000-1007.
  145. Schultzberg M., Lindberg C., Aronsson A.F. et al. Inflammation in the nervous system-physiological and pathophysiological aspects // Physiol. Behav. 2007. Vol. 92. P. 121-128.
  146. Schwartz M., Lazarov-Spiegler O., Rapalino O. et al. Potential repair of rat spinal cord injuries using stimulated homlogous macrophages // Neurosurgery. 1999. Vol. 44 (5). P. 1041-1045.
  147. Sellebjerg F., Madsen H.O., Frederiksen J.L. et al. Acute optic neuritis: myelin basic protein and proteo- lipid protein antibodies? Affinity, and the HLA system //Ann. Neurol. 1995. ѴЫ. 38. P. 943-950.
  148. Singh I., Pahan K., Khan M., Singh A.K. Cytokine- mediated induction of ceramide production is redox- sensitive. Implications to proinflammatory cytokine- mediated apoptosis in demyelinating diseases // J. Biol. Chem. 1998. Vol. 273 (32). P. 20354-20362.
  149. Slepko N., Levi G. Progressive activation of adult microglial cells in vitro // Glia. 1996. Vol. 16. P. 241- 246.
  150. Sortwell C.E., Daley B.F., Pitzer M.R. et al. Oligodendrocyte-type 2 astrocyte-derived trophic factors increase survival of developing dopamine neurons through the inhibition of apoptotic cell death // J. Comp. Neurol. 2000. Vol. 426 (1). P. 143-153.
  151. Sozzani S., Allavena P., Proost P. et al. Chemokines as targets for pharmacological intervention // Prog. Drug Res. 1996. Vol. 47. P. 53-80.
  152. Sroga J.M., Jones T.B., Kigerl K.A. et al. Rats and mice exhibit distinct inflammatory reactions after spinal cord injury // J. Comp. Neurol. 2003. Vol. 462 (2). P. 223-240.
  153. Stankiewicz J., Panter S.S., Neema M. et al. Iron in chronic brain disorders: imaging and neurotherapeu- tic implications // Neurotherapeutics. 2007. Vol. 4 (3). P. 371-386.
  154. Stolzing A., Grune T. Neuronal apoptotic bodies: phagocytosis and degradation by primary microglial cells // FASEB J. 2004. Vol. 18. P. 743-745.
  155. Storz G., Tartaglia L.A. OxyR: a regulator of antioxidant genes // J. Nutr. 1992. Vol. 122 (Suppl. 3). P. 627-639.
  156. Streit W.J. Microglial-neuronal interactions // J. Chem. Neuroanat. 1993. Vol. 6 (4). P. 261-266.
  157. Szatkowski M., Barbour B., Attwell D. Non-ve- sicular release of glutamate from glial cells by reversed electrogenic glutamate uptake // Nature. 1990. Vol. 348 (6300). P. 443^446.
  158. Takeshima T., Johnston J.M., Commissiong J.W. Oligodendrocyte-type-2 astrocyte (0-2A) progenitors increase the survival of rat mesencephalic, dopaminergic neurons from death induced by serum deprivation //Neurosci. Lett. 1994. Vol. 166 (2). P. 178-182.
  159. Takeuchi H., Mizuno T., Zhang G. et al. Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport // J. Biol. Chem. 2005. Vol. 280. P. 10444-10454.
  160. Tambuyzer B.R., Nouwen E.J. Inhibition of microglia multinucleated giant cell formation and induction of differentiation by GM-CSF using a porcine in vitro model // Cytokine. 2005. Vol. 31. P. 270-279.
  161. Tanaka H., Grooms S.Y., Bennett M.V., Zukin R.S. The AMPAR subunit GluR2: still front and center- stage // Brain Res. 2000. Vol. 886 (1-2). P. 190- 207.
  162. Thoenen H. Neurotrophins and neuronal plasticity // Science. 1995. Vol. 270 (5236). P. 593-598.
  163. Thorbume S.K., Juurlink B.H. Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress // J. Neurochem. 1996. Vol. 67 (3). P. 1014-1022.
  164. Tong L., Toliver-Kinsky T., Taglialatela G. et al. Signal transduction in neuronal death // J. Neurochem. 1998. Vol. 71 (2). P.447-459.
  165. Town T., Nikolic V, Tan J. The microglial «activation» continuum: from innate to adaptive responses // J. Neuroinflammation. 2005. Vol. 2. P. 24.
  166. Trivedi A., Olivas A.D., Noble-Haeusslein L.J. Inflammation and Spinal Cord Injury: Infiltrating leukocytes as detenninants of injury and repair processes // Clin. Neurosci. Res. 2006. Vol. 6 (5). P. 283-292.
  167. Uberti D., Yavin E., Gil S. et al. Hydrogen peroxide induces nuclear translocation of p53 and apoptosis in cells of oligodendroglia origin // Brain Res. Mol. Brain Res. 1999. Vol. 65 (2). P. 167-175.
  168. Unsicker K., Strelau J. Functions of transforming growth factor-beta isoforms in the nervous system. Cues based on localization and experimental in vitro and in vivo evidence // Eur. J. Biochem. 2000. Vol. 267 (24). P. 6972-6975.
  169. Van Rossum D., Hanisch U.K. Microglia// Metab. Brain Dis. 2004. Vol. 19. P. 393-411.
  170. Velardo M.J., Burger C, Williams PR. et al. Patterns of gene expression reveal a temporally orchestrated wound healing response in the injured spinal cord // J. Neurosci. 2004. Vol. 24 (39). P. 8562-8576.
  171. Verkhratsky A., Orkand R.K., Kettenmann H. Glial calcium: homeostasis and signaling function // Physiol. Rev. 1998. Vol. 78 (1). P. 99-141.
  172. Vesce S., Bezzi P, Volterra A. The active role of astrocytes in synaptic transmission // Cell Mol. Life Sci. 1999. Vol. 56 (11-12). P. 991-1000.
  173. Von Zahn J., Moller T., Kettenmann H., Nolte C. Microglial phagocytosis is modulated by pro- and antiinflammatory cytokines //Neuroreport. 1997. Vol. 8 (18). P. 3851-3856.
  174. Wang X., Arcuino G., Takano T. et al. P2X7 receptor inhibition improves recovery after spinal cord injury //Nat. Med. 2004. Vol. 10 (8). P. 821-827.
  175. Weiss S.J. Tissue destruction by neutrophils // N. Engl. J. Med. 1989. Vol. 320 (6). P. 365-376.
  176. Wirjatijasa F., Dehghani F., Blaheta R.A. et al. Interleukin-4, interleukin-10, and interleukin-1-receptor antagonist but not transforming growth factor-p induce ramification and reduce adhesion molecule expression of rat microglial cells // J. Neurosci. Res. 2002. Vol. 68. P. 579-587.
  177. Wender R., Brown A.M., Fem R. et al. Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter// J. Neurosci. 2000. Vol. 20 (18). P. 6804-6810.
  178. Wolosker H., Panizzutti R., Dc Miranda J. Neurobiology through the looking-glass: D-serine as a new glial-derived transmitter // Neurochem. Int. 2002. Vol. 41 (5). P. 327-332.
  179. Xiao B.G., Link H. Antigen-specific T cells in autoimmune diseases with a focus on multiple sclerosis and experimental allergic encephalomyelitis // Cell Mol. Life Sci. 1999. Vol. 56 (1-2). P. 5-21.
  180. Yang G.Y., Liu X.H., Kadoya C. et al. Attenuation of ischemic inflammatory response in mouse brain using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist // J. Cereb. Blood Flow Metab. 1998. Vol. 18. P. 840-847.
  181. Ye P., D’Ercole A.J. Insulin-like growth factor I protects oligodendrocytes from tumor necrosis factor- a-induced injury // Endocrinology. 1999. Vol. 140. P. 3063-3072.
  182. Yin X., Crawford T.O., Griffin J.W. et al. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons // J. Neurosci. 1998. Vol. 18(6). P. 1953-1962.
  183. Zhang Y., Da R.R., Guo W. et al. Axon reactive В cells clonally expanded in the cerebrospinal fluid of patients with multiple sclerosis // J. Clin. Immunol. 2005. Vol. 25 (3). P. 254-264.
  184. Zhao X., Bausano B., Pike B.R. et al. TNF-alpha stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures // J. Neurosci. Res. 2001. Vol. 64(2). P. 121-131.
  185. Zeinstra E., Wilczak N., De Keyser J. Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2 // J. Neuroimmunol. 2003. Vol. 135 (1-2). P. 166-171.
  186. Zeng C., Lee J.T., Chen H. et al. Amyloid-beta peptide enhances tumor necrosis factor-alpha induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes // J. Neurochem. 2005. Vol. 94 (5). P. 703-712.

Views

Abstract - 65

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2011 Abdurasulova I.N., Klimenko V.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.