Molecular diagnostics of familial hypercholesterolemia in Russia: yesterday, today and tomorrow



Cite item

Full Text

Abstract

Familial hypercholesterolemia (FH) is a severe hereditary disease leading to the development of atherosclerosis and its complications in the form of angina pectoris, myocardial infarction, cerebral stroke, or even leading to sudden death. Since the description of the disease, the concept of it has undergone significant evolution. First, it became clear that the prevalence of this disease was significantly higher than originally thought (1:300 for heterozygous FH and not as 1:500 as estimated earlier). Secondly, it has been established that it is not based on the pathology of the low-density lipoprotein receptor (LDLR) gene alone, but includes at least four monogenic forms (defects of the APOB, PCSK9, ARH genes) and may also have a multigenic nature. Thirdly, with the development of DNA analysis methods from the initially available Southern hybridization to next generation DNA sequencing (NGS), the exceptional molecular heterogeneity of FH became obvious and, accordingly, the need to establish national spectra of mutations leading to the development of FH was established. Researchers have moved from characterizing individual mutations to creating national registries and databases. Finally, research into the genetics of FH has led to the emergence of new classes of cholesterol-lowering drugs. In Russia, molecular diagnostics of FH has also undergone significant changes since the beginning of the study of FH in 1987 and to the present, consideration of these changes formed the basis of this review.

Full Text

Restricted Access

About the authors

Faina Mikhailovna Zakharova

Institute of Experimental Medicine

Author for correspondence.
Email: fzakharova@mail.ru
ORCID iD: 0000-0002-9558-3979
SPIN-code: 9699-5744

Ph.D., senior researcher of the Department of Molecular Genetics 

Russian Federation, 12, Acad. Pavlov Street, 197376, St. Petersburg

Mikhail Yurievich Mandelstam

Institute of Experimental Medicine

Email: amitinus@mail.ru
ORCID iD: 0000-0002-7135-3239
SPIN-code: 1893-9417

Ph.D, leading researcher of the Department of Molecular

Russian Federation, 12, Acad. Pavlov Street, 197376, St. Petersburg

Tatiana Yurievna Bogoslovskaya

Institute of Experimental Medicine

Email: ktu17@yandex.ru
ORCID iD: 0000-0002-9480-1073
SPIN-code: 8406-6162

Ph.D., researcher of the Department of Molecular Genetics

Russian Federation, 12, Acad. Pavlov Street, 197376, St. Petersburg

Vadim Borisovich Vasiliev

Institute of Experimental Medicine

Email: vadim@biokemis.ru
ORCID iD: 0000-0002-9707-262X
SPIN-code: 8298-1469

Ph.D., M.D., professor, head of the Department of Molecular Genetics

Russian Federation, 12, Acad. Pavlov Street, 197376, St. Petersburg

References

  1. Goldstein JL, Hobbs HH, Brown MS. Familial hypercholesterolemia. Ed. by Scriver CR, AB, Sly WS, Valle D. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill; 2001; pp. 2863–2913.
  2. Sjouke B, Kusters DM, Kindt I, et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur Heart J. 2015;36(9):560-565. https://doi.org/10.1016/S0735-1097(14)62053-2.
  3. Defesche JC, Gidding SS, Harada-Shiba M, et al. Familial hypercholesterolaemia. Nat Rev Dis Primers. 2017;3:17093. https://doi.org/10.1038/nrdp.2017.93.
  4. Sarraju A, Knowles JW. Genetic testing and risk scores: impact on familial hypercholesterolemia. Front Cardiovasc Med. 2019;6:5.
  5. https://doi.org/10.3389/fcvm.2019.00005.
  6. Seftel HC, Baker SG, Jenkins T, Mendelsohn D. Prevalence of familial hypercholesterolemia in Johannesburg Jews. Am J Med Genet. 1989;34(4):545-547.
  7. https://doi.org/10.1002/ajmg.1320340418.
  8. Marks D, Thorogood M, Neil HA, Humphries SE. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis. 2003;168(1):1-14.
  9. https://doi.org/10.1016/s0021-9150(02)00330-1.
  10. Steyn K, Goldberg YP, Kotze MJ, et al. Estimation of the prevalence of familial hypercholesterolaemia in a rural Afrikaner community by direct screening for three Afrikaner founder low density lipoprotein receptor gene mutations. Hum Genet. 1996;98(4):479-484.
  11. https://doi.org/10.1007/s004390050243.
  12. Marais AD, Firth JC, Blom DJ. Familial hypercholesterolemia in South Africa. Semin Vasc Med. 2004;4(1):93-95. https://doi.org/10.1055/s-2004-822991.
  13. Moorjani S, Roy M, Gagné C, et al. Homozygous familial hypercholesterolemia among French Canadians in Québec Province. Arteriosclerosis. 1989;9(2):211-216.
  14. https://doi.org/10.1161/01.atv.9.2.211.
  15. Der Kaloustian VM, Naffah J, Loiselet J. Genetic diseases in Lebanon. Am J Med Genet. 1980;7(2):187-203. https://doi.org/10.1002/ajmg.1320070212.
  16. Karpov YuA, Kukharchuk VV, Boytsov SA, et al. Consensus statement of the Russian National Atherosclerosis Society (RNAS). Familial hypercholesterolemia in Russia: outstanding issues in diagnosis and management. Atheroscler. Dyslipidem. 2015;2(5–16). (In Russ.).
  17. Ershova AI, Meshkov AN, Bazhan SS, et al. The prevalence of familial hypercholesterolemia in the West Siberian region of the Russian Federation: A substudy of the ESSE-RF. PLoS One. 2017;12(7):e0181148. https://doi.org/10.1016/j.atherosclerosis.2017.06.592.
  18. Umans-Eckenhausen MA, Defesche JC, Sijbrands EJ, et al. Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands. Lancet. 2001;357(9251):165-168. https://doi.org/10.1016/s0140-6736(00)03587-x.
  19. Muller C. Angina pectoris in hereditary xanthomatosis. Nutr Rev. 1987;45(4):113–115.
  20. https://doi.org/10.1111/j.1753-4887.1987.tb02723.x.
  21. Khachadurian AK. The inheritance of essential familial hypercholesterolemia. Am J Med. 1964;37:402–7. https://doi.org/10.1016/0002-9343(64)90196-2.
  22. Brown MS, Goldstein JL. Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc Natl Acad Sci U S A. 1974;71(3):788-792.
  23. https://doi.org/10.1073/pnas.71.3.788.
  24. Südhof TC, Goldstein JL, Brown MS, Russell DW. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985;228(4701):815-822.
  25. https://doi.org/10.1126/science.2988123.
  26. Law SW, Lackner KJ, Hospattankar AV, et al. Human apolipoprotein B-100: cloning, analysis of liver mRNA, and assignment of the gene to chromosome 2. Proc Natl Acad Sci U S A. 1985;82(24):8340-8344. https://doi.org/10.1073/pnas.82.24.8340.
  27. Vega GL, Grundy SM. In vivo evidence for reduced binding of low density lipoproteins to receptors as a cause of primary moderate hypercholesterolemia. J Clin Invest. 1986;78(5):1410-1414. https://doi.org/10.1172/jci112729.
  28. Innerarity TL, Weisgraber KH, Arnold KS, et al. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci U S A. 1987;84(19):6919-6923. https://doi.org/10.1073/pnas.84.19.6919.
  29. Soria LF, Ludwig EH, Clarke HR, et al. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci U S A. 1989;86(2):587-591. https://doi.org/10.1073/pnas.86.2.587.
  30. Alves AC, Etxebarria A, Soutar AK, Martin C, Bourbon M. Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia. Hum Mol Genet. 2014;23(7):1817-1828. https://doi.org/10.1093/hmg/ddt573.
  31. Garcia CK, Wilund K, Arca M, et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science. 2001;292(5520):1394-1398.
  32. https://doi.org/10.1126/science.1060458.
  33. Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100(3):928-933.
  34. https://doi.org/10.1073/pnas.0335507100.
  35. Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154-156. https://doi.org/10.1038/ng1161.
  36. Mandelshtam MY, Vasilyev VB. Monogenic hypercholesterolemias: new genes, new drug targets. Russian Journal of Genetics. 2008;44,(10):1134-1140 (Translated from Russian)
  37. https://doi.org/10.1134/s1022795408100025.
  38. Marduel M, Ouguerram K, Serre V, et al. Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p.Leu167del mutation. Hum Mutat. 2013;34(1):83-87. https://doi.org/10.1002/humu.22215.
  39. Awan Z, Choi HY, Stitziel N, et al. APOE p.Leu167del mutation in familial hypercholesterolemia. Atherosclerosis. 2013;231(2):218-222.
  40. https://doi.org/10.1016/j.atherosclerosis.2013.09.007.
  41. Wintjens R, Bozon D, Belabbas K, et al. Global molecular analysis and APOE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France. J Lipid Res. 2016;57(3):482-491. https://doi.org/10.1194/jlr.p055699.
  42. Abifadel M, Boileau C. Genetic and molecular architecture of familial hypercholesterolemia. J Intern Med. 2023;293:144–165. https://doi.org/10.1111/joim.13577.
  43. Talmud PJ, Shah S, Whittall R, et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet. 2013;381(9874):1293-1301.
  44. https://doi.org/10.1016/s0140-6736(12)62127-8.
  45. Shakhtshneider E, Ivanoshchuk D, Orlov P, et al. Analysis of the Ldlr, Apob, Pcsk9 and Ldlrap1 genes variability in patients with familial hypercholesterolemia in West Siberia using targeted high throughput resequencing. Atherosclerosis. 2019;287:e285.
  46. https://doi.org/10.1016/j.atherosclerosis.2019.06.883.
  47. Miroshnikova VV, Romanova OV, Ivanova ON, et al. Identification of novel variants in the LDLR gene in Russian patients with familial hypercholesterolemia using targeted sequencing. Biomed Rep. 2021;14(1):15. https://doi.org/10.3892/br.2020.1391.
  48. Meshkov A, Ershova A, Kiseleva A, et al. The LDLR, APOB, and PCSK9 variants of index patients with familial hypercholesterolemia in Russia. Genes (Basel). 2021;12(1):66.
  49. https://doi.org/10.3390/genes12010066.
  50. Shakhtshneider E, Ivanoshchuk D, Timoshchenko O, et al. Analysis of rare variants in genes related to lipid metabolism in patients with familial hypercholesterolemia in Western Siberia (Russia). J Pers Med. 2021;11(11):1232. https://doi.org/10.3390/jpm11111232.
  51. Andersen LH, Miserez AR, Ahmad Z, Andersen RL. Familial defective apolipoprotein B-100: A review. J Clin Lipidol. 2016;10(6):1297-1302. https://doi.org/10.1016/j.jacl.2016.09.009.
  52. Ezhov MV, Barbarash OL, Voevoda MI, et al. Organization of lipid centers operation in the Russian Federation — new opportunities. Russian Journal of Cardiology. 2021;26(6):4489 (In Russ.) https://doi.org/10.15829/1560-4071-2021-4489.
  53. Hamasaki M, Sakane N, Hara K, Kotani K. LDL-cholesterol and PCSK9 in patients with familial hypercholesterolemia: influence of PCSK9 variants under lipid-lowering therapy. J Clin Lab Anal. 2021;35(11):e24056. https://doi.org/10.1002/jcla.24056 .
  54. Mandel’shtam MYu, Lipovetskii BM, Schvartsman AL, Gaitskhoki VS. Molecular heterogeneity of familial hypercholesterolemia in the St.Petersburg population. Russian Journal of Genetics. 1995;31(4):447–452. (Translated from Russian).
  55. Mandelshtam MJ, Lipovetskyi BM, Schwartzman AL, Gaitskhoki VS. A novel deletion in the low-density lipoprotein receptor gene in a patient with familial hypercholesterolemia from Petersburg. Hum Mutat. 1993;2(4):256-260. https://doi.org/10.1002/humu.1380020404 .
  56. Zakharova FM, Damgaard D, Mandelshtam MY, et al. Familial hypercholesterolemia in St-Petersburg: the known and novel mutations found in the low density lipoprotein receptor gene in Russia. BMC Med Genet. 2005;6:6. https://doi.org/10.1186/1471-2350-6-6 .
  57. Komarova TY, Korneva VA, Kuznetsova TY, et al. Familial hypercholesterolemia mutations in Petrozavodsk: no similarity to St. Petersburg mutation spectrum. BMC Med Genet. 2013;14:128. https://doi.org/10.1186/1471-2350-14-128 .
  58. Korneva VA, Kuznetsova TY, Bogoslovskaya TY, et al. Cholesterol Levels in Genetically Determined Familial Hypercholesterolaemia in Russian Karelia. Cholesterol. 2017;2017:9375818. https://doi.org/10.1155/2017/9375818 .
  59. Vasilyev VB, Zakharova FM, Bogoslovskaya TYu, Mandelshtam MYu. Analysis of the low density lipoprotein receptor gene (LDLR) mutation spectrum in Russian familial hypercholesterolemia. Vavilov Journal of Genetics and Breeding. 2022;26(3):319-326. (Translated from Russian). https://doi.org/10.18699/vjgb-22-38 .
  60. Meshkov AN, Malyshev PP, Kukharchuk VV. Familial hypercholesterolemia in Russia: genetic and phenotypic characteristics. Terapevticheskiy Arkhiv. 2009;81(9): 23-28 (in Russ.)
  61. Malyshev PP, Meshkov AN, Kotova LA, Kukharchuk VV. Familial defect of apolipoprotein В-100: molecular disease basis and clinico-biochemical characteristics of the patients. Cardiovascular Therapy and Prevention. 2007;6(6):40-45. (In Russ.)
  62. Voevoda MI, Kulikov IV, Shakhtshneider EV, et al. The spectrum of mutations in the low-density lipoprotein receptor gene in the Russian population. Russian Journal of Genetics. 2008; 44(10):1191-1194. (Translated from Russian)
  63. https://doi.org/10.1134/s1022795408100074 .
  64. Semenova AE, Sergienko IV, García-Giustiniani D, et al. Verification of underlying genetic cause in a cohort of Russian patients with familial hypercholesterolemia using targeted next generation sequencing. J Cardiovasc Dev Dis. 2020;7(2):16.
  65. https://doi.org/10.3390/jcdd7020016 .
  66. Vasilyev V, Zakharova F, Bogoslovskay T, Mandelshtam M. Familial hypercholesterolemia in Russia: Three decades of genetic studies. Front Genet. 2020;11:550591.
  67. https://doi.org/10.3389/fgene.2020.550591 .
  68. Meshkov AN, Ershova AI, Kiseleva AV, et al. The prevalence of heterozygous familial hypercholesterolemia in selected regions of the Russian Federation: The FH-ESSE-RF study. J Pers Med. 2021;11(6):464. https://doi.org/10.3390/jpm11060464 .
  69. Chakir Kh, Skobeleva NA, Shevtsov SP, et al. Two novel slavic point mutations in the low-density lipoprotein receptor gene in patients with familial hypercholesterolemia from St. Petersburg, Russia. Mol Genet Metab. 1998;63(1):31-34.
  70. https://doi.org/10.1006/mgme.1997.2614 .
  71. Mandelshtam M, Chakir K, Shevtsov S, et al. Prevalence of Lithuanian mutation among St. Petersburg Jews with familial hypercholesterolemia. Hum Mutat. 1998;12(4):255-258.
  72. https://doi.org/10.1002/(sici)1098-1004(1998)12:4<255::aid-humu6>3.0.co;2-e .
  73. Baza dannykh «Perechen' mutatsii v gene retseptora lipoproteinov nizkoy plotnosti, obnaruzhennykh u patsientov s semeynoy giperkholesterinemiey v Rossii»: pat. 2022621118 Ros. Federatsiya. №2022620507; zayavl. 21.03.2022; opubl. 18.05.2022 Byul. № 5.
  74. Baza dannykh «Perechen' polimorfizmov v gene retseptora lipoproteinov nizkoy plotnosti, obnaruzhennykh u patsientov s semeynoy giperkholesterinemiey v Rossii»: pat. №2022620667 Ros. Federatsiya. 2022620508; zayavl. 21.03.2022; opubl. 29.03.2022 Byul. № 4.
  75. El Khoury P, Elbitar S, Ghaleb Y, et al. PCSK9 Mutations in familial hypercholesterolemia: from a groundbreaking discovery to anti-PCSK9 therapies. Curr Atheroscler Rep. 2017;19(12):49. https://doi.org/10.1007/s11883-017-0684-8 .
  76. Raal FJ, Honarpour N, Blom DJ, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):341-350. https://doi.org/10.1016/s0140-6736(14)61374-x .
  77. Blom DJ, Harada-Shiba M, Rubba P, et al. Efficacy and safety of Alirocumab in adults with homozygous familial hypercholesterolemia: The ODYSSEY HoFH Trial. J Am Coll Cardiol. 2020;76(2):131-142. https://doi.org/10.1016/j.jacc.2020.05.027 .
  78. Hovingh GK, Lepor NE, Kallend D, et al. Inclisiran durably lowers low-density lipoprotein cholesterol and proprotein convertase subtilisin/kexin type 9 expression in homozygous familial hypercholesterolemia: The ORION-2 pilot study. Circulation. 2020;141(22):1829-1831.
  79. https://doi.org/10.1161/circulationaha.119.044431 .
  80. Ray KK, Bays HE, Catapano AL, et al. Safety and efficacy of Bempedoic acid to reduce LDL cholesterol. N Engl J Med. 2019;380(11):1022-1032. https://doi.org/10.1056/nejmoa1803917 .
  81. Tibuakuu M, Blumenthal RS, Martin SS Bempedoic Acid for LDL-C Lowering: what Do We Know? [Internet]. American College of Cardiology; Aug 10, 2020. Available from: https://www.acc.org/latest-in-cardiology/articles/2020/08/10/08/21/bempedoic-acid-for-ldl-c-lowering (accessed 29.02.2024)
  82. Arca M, Minicocci I, Maranghi M. The angiopoietin-like protein 3: a hepatokine with expanding role in metabolism. Curr Opin Lipidol. 2013;24(4):313-320.
  83. https://doi.org/10.1097/mol.0b013e3283630cf0
  84. Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363(23):2220-2227.
  85. https://doi.org/10.1056/nejmoa1002926 .
  86. Dewey FE, Gusarova V, Dunbar RL, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017;377(3):211-221.
  87. https://doi.org/10.1056/nejmoa1612790 .
  88. Stitziel NO, Khera AV, Wang X, et al. ANGPTL3 Deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69(16):2054-2063.
  89. https://doi.org/10.1016/j.jacc.2017.02.030 .
  90. Chilazi M, Sharma G, Blumenthal RS, Martin SS. Angiopoietin-like 3 (ANGPTL3)— a novel therapeutic target for treatment of hyperlipidemia [Internet]. American College of Cardiology; Jan 06, 2021. Available from: https://www.acc.org/latest-in-cardiology/articles/2021/01/06/13/01/angiopoietin-like-3-angptl3. (accessed 29.02.2024)
  91. Raal FJ, Hovingh GK, Catapano AL. Familial hypercholesterolemia treatments: Guidelines and new therapies. Atherosclerosis. 2018;277:483-492.
  92. https://doi.org/10.1016/j.atherosclerosis.2018.06.859 .
  93. Konstantinov VO. Familial hypercholesterolemia: Three “under” (understood, underdiagnosed, and undertreated) disease [Internet]. Cardiovascular Risk Factors in Pathology. IntechOpen; 2021. Available from: http://dx.doi.org/10.5772/intechopen.93042 (accessed 29.04.2024)
  94. Sadykova DI, Galimova LF. Familial hypercholesterolemia in children: clinic, diagnostics, treatment. Rossiyskiy Vestnik Perinatologii Pediatrii. 2017;62:(5):119-23. (In Russ.) https://doi.org/10.21508/1027-4065-2017-62-5-119-123.
  95. Galimova LF, Sadykova DI, Slastnikova E., Usova NE. Diagnosis of familial hypercholesterolemia in children: cascade screening from theory to practice. Cardiovascular Therapy and Prevention. 2020;19(3):2348. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2348.
  96. Zakharova IN, Osmanov IM, Pshenichnikova II, et al. Hypercholesterolemia in children and adolescents: focus on the familial variant. Meditsinskiy sovet. 2021;(17):294–299. (In Russ.) https://doi.org/10.21518/2079- 701X-2021-17-294-299.
  97. Yezhov MV, Bliznyuk SA, Tmoyan NA, et al. Register of patients with familial hypercholesterolemia and patients of very high cardiovascular risk with lipid-lowering therapy underperformance (RENESSANS). Russian Journal of Cardiology. 2019;(5):7-13. (In Russ.) https://doi.org/10.15829/1560-4071-2019-5-7-13.
  98. Ezhov MV, Sergienko IV, Rozhkova TА et al. Diagnosis and treatment of family hypercholesterinemia (russian guidelines). The Bulletin of Contemporary Clinical Medicine. 2017;10(2): 72–79 (In Russ.)
  99. https://doi.org/10.20969/VSKM.2017.10(2).72-79.
  100. Pogoda T, Metelskaya V, Perova N, Limborska S. Detection of the apoB-3500 mutation in a Russian family with coronary heart disease. Hum Hered. 1998 Sep-Oct;48(5):291-2. https://doi.org/10.1159/000022819
  101. [Krapivner S.R., Malyshev P.P., Poltaraus A.B., et al. A case of familial hypercholesterolemia caused by a novel mutation D461Y in the low density lipoprotein receptor gene. Kardiologiia. 2001;41(1):92-94. (In Russ.).
  102. Shakhtshneider EV, Makarenkova KV, Astrakova KS, et al. Targeted next-generation sequencing of PCSK9 gene in patients with familial hypercholesterolemia in Russia. Kardiologiia. 2017;57(6):46–51 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies