Effect of kisspeptin-10 on sexual activity in male rats after exposure to restraint stress
- Authors: Goltz V.А.1, Lebedev А.А.1, Bychkov E.R.1,2, Perova A.P.3, Pyurveev S.S.1,4, Litvinova M.V.1, Bairamov А.А.1,5, Pshenichnaya А.G.1, Rusanovsky V.V.4, Islentyev A.R.4, Yezhova А.D.4, Оlegovna E.V.4, Skripchak L.Y.4, Nadbitova N.D.1, Yurov А.Y.1,4, Shabanov P.D.1
-
Affiliations:
- Institute of Experimental Medicine
- Kirov Military Medical Academy
- Saint Petersburg State University
- Saint Petersburg State Pediatric Medical University
- Almazov National Medical Research Centre
- Issue: Vol 25, No 2 (2025)
- Pages: 85-93
- Section: Original research
- Published: 30.06.2025
- URL: https://journals.eco-vector.com/MAJ/article/view/630598
- DOI: https://doi.org/10.17816/MAJ630598
- EDN: https://elibrary.ru/LMNWAU
- ID: 630598
Cite item
Abstract
BACKGROUND: Sexual dysfunctions are of high social significance, and their steady growth necessitates the search for new pharmacological targets for correction. Mental stress is a trigger of decreased sexual activity. Previously, the effect of predator presentation stress on sexual motivation of male rats was established, which manifested itself in a decrease in exploratory activity toward female rats in estrus. The neuropeptide kisspeptin regulates the hypothalamic-pituitary-gonadal system and is involved in the modulation of sexual behavior.
AIM: This works aimed to assess the effect of kisspeptin-10 introduced centrally and peripherally on sexual behavior of rats after restraint stress.
METHODS: Male Wistar rats were exposed to restraint stress. To assess sexual behavior, a male rat was placed in a cage with a female rat in estrus. The latency time to approach the female and the number of mounts per female within 3 minutes were recorded.
RESULTS: The latency time for approaching female rats in stressed animals increased by 1.3 times (p < 0.01) compared to intact controls. After intranasal introduction of kisspeptin-10, the latency time decreased by 1.4 times compared to the control group (p < 0.05) and by 1.8 times compared to the stressed group without drug introduction (p < 0.001). After a single intraperitoneal introduction of kisspeptin-10, the latency time decreased by 2 times compared to the control group (p < 0.01) and by 2.6 times compared to the stressed group without drug introduction (p < 0.001). After a course of intranasal introduction of kisspeptin-10, the latency time decreased by 2.4 times compared to the control group (p < 0.01) and by 3 times compared to the stressed group without drug introduction (p < 0.001). After a course of intraperitoneal introduction of kisspeptin-10, the latency time decreased by 2 times (p < 0.05) compared to the control group and by 2.4 times compared to the stressed group without drug introduction (p < 0.01). After a single intraperitoneal introduction of kisspeptin-10, the number of mounts per female increased by 3.3 times compared to the control group (p < 0.001) and by 3 times compared to the stressed group without drug introduction (p < 0.01). After a course of intraperitoneal introduction of kisspeptin-10, the number of mounts per female increased by 3.7 times compared to the control group (p < 0.001) and by 3.3 times compared to the stressed group without drug introduction (p < 0.01).
CONCLUSION: Kisspeptin-10 enhances sexual activity in male rats after restraint stress. Intranasal and intraperitoneal drug introduction triggers a reduced latency time of approaching a female rat. After intraperitoneal introduction, the number of mounts per female increases.
Keywords
Full Text

About the authors
Vladanka А. Goltz
Institute of Experimental Medicine
Author for correspondence.
Email: digitalisobscura@mail.ru
ORCID iD: 0009-0001-2716-318X
SPIN-code: 2031-2550
Russian Federation, Saint Petersburg
Аndrei А. Lebedev
Institute of Experimental Medicine
Email: aalebedev-iem@rambler.ru
ORCID iD: 0000-0003-0297-0425
SPIN-code: 4998-5204
Dr. Sci. (Biology), Professor
Russian Federation, Saint PetersburgEvgenii R. Bychkov
Institute of Experimental Medicine; Kirov Military Medical Academy
Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
SPIN-code: 9408-0799
MD, Dr. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgAnastasia P. Perova
Saint Petersburg State University
Email: alpacamr@gmail.com
ORCID iD: 0009-0003-2548-8647
SPIN-code: 1058-0174
Russian Federation, Saint Petersburg
Sarng S. Pyurveev
Institute of Experimental Medicine; Saint Petersburg State Pediatric Medical University
Email: dr.purveev@gmail.com
ORCID iD: 0000-0002-4467-2269
SPIN-code: 5915-9767
Russian Federation, Saint Petersburg; Saint Petersburg
Mariya V. Litvinova
Institute of Experimental Medicine
Email: litvinova-masha@bk.ru
ORCID iD: 0000-0002-2924-7475
SPIN-code: 9548-4683
Russian Federation, Saint Petersburg
Аlekber А. Bairamov
Institute of Experimental Medicine; Almazov National Medical Research Centre
Email: alekber@mail.ru
ORCID iD: 0000-0002-0673-8722
SPIN-code: 9802-9988
MD, Dr. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgАnna G. Pshenichnaya
Institute of Experimental Medicine
Email: pscanna@mail.ru
ORCID iD: 0009-0003-2836-3671
SPIN-code: 1324-9710
Russian Federation, Saint Petersburg
Vladimir V. Rusanovsky
Saint Petersburg State Pediatric Medical University
Email: rusvv2058@gmail.com
ORCID iD: 0000-0002-0432-7946
SPIN-code: 7010-4530
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgArtemy R. Islentyev
Saint Petersburg State Pediatric Medical University
Email: apk.stwrk@mail.ru
ORCID iD: 0009-0002-1809-9611
SPIN-code: 5559-6860
Russian Federation, Saint Petersburg
Аlina D. Yezhova
Saint Petersburg State Pediatric Medical University
Email: alisha25022004@gmail.com
ORCID iD: 0009-0000-2206-0619
Russian Federation, Saint Petersburg
Efimova Vera Оlegovna
Saint Petersburg State Pediatric Medical University
Email: verusha1810@yandex.ru
ORCID iD: 0009-0005-3067-8132
Russian Federation, Saint Petersburg
Lada Yu. Skripchak
Saint Petersburg State Pediatric Medical University
Email: Ladochka.2020@mail.ru
ORCID iD: 0009-0002-3088-2748
SPIN-code: 4718-2513
Russian Federation, Saint Petersburg
Natalia D. Nadbitova
Institute of Experimental Medicine
Email: natali_805@mail.ru
ORCID iD: 0000-0002-2957-226X
SPIN-code: 4153-1270
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgАndrei Yu. Yurov
Institute of Experimental Medicine; Saint Petersburg State Pediatric Medical University
Email: ayroot@mail.ru
SPIN-code: 5211-2420
Russian Federation, Saint Petersburg; Saint Petersburg
Petr D. Shabanov
Institute of Experimental Medicine
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgReferences
- Akarachkova ES, Baidauletova AI, Belyaev AA, et al. Stress: causes and consequences, treatment and prevention. Clinical recommendations. Saint Petersburg: Skifia-print; 2020. 138 p. (In Russ.) EDN: KKAWJO
- Petrova EV, Vakina TN, Petrov OA. Clinic and therapy of erectile dysfunction. Guidance. Penza; 2015. 64 p. (In Russ.)
- Jiang F, Liu Z, Wu X, et al. Prevalence of sexual dysfunction and its association with psychological symptoms in drug-naive major depressive disorder patients in West. China. Front Psychiatry. 2023;14:1291988. doi: 10.3389/fpsyt.2023.1291988
- Bialy M, Bogacki-Rychlik W, Przybylski J, et al. Sexual motivation of male rats as a tool in animal models of human health disorders. J Front Behav Neurosci. 2019;13:257. doi: 10.3389/fnbeh.2019.00257
- Agmo A. On the intricate relationship between sexual motivation and arousal. Horm Behav. 2011;59(5):681–688. doi: 10.1016/j.yhbeh.2010.08.013
- Agmo A, Villalpando A, Picker Z, et al. Lesions of the medial prefrontal cortex and sexual behavior in the male rat. J Brain Res. 1995;696(1–2):177–186. doi: 10.1016/0006-8993(95)00852-h
- Bondarenko TI, Sorokina IA, Mayboroda EA, et al. Effect of delta sleep-indu cing peptide on oxidative modifi cation of proteins in rat tissues and blood during physiological aging. Bull Exp Biol Med. 2012;153(3):371–374. doi: 10.1007/s10517-012-1719-3
- Belykh AE, Bobyntsev II. Delta sleep-inducing peptide: several biological effects and mechanisms of their development. Humans and their health. 2016;(1):79–90. EDN: VSZEJH
- Yang L, Demetriou L, Wall MB, et al. Kisspeptin enhances brain responses to olfactory and visual cues of attraction in men. JCI Insight. 2020;5(3):e133633. doi: 10.1172/jci.insight.133633
- Young SL. A “kiss” before conception: triggering ovulation with kisspeptin-54 may improve IVF. J Clin Invest. 2014;124(8):3277–3278. doi: 10.1172/JCI77196
- Levinson A, Igonina T, Rozhkova I, et al. Psycho-emotional stress, folliculogenesis, and reproductive technologies: clinical and experimental data. Vavilov Journal of Genetics and Breeding. 2022;26(5):431–441. doi: 10.18699/VJGB-22-53
- Shen Y, Danni He, Luhong He, et al. Chronic psychological stress, but not chronic pain stress, influences sexual motivation and induces testicular autophagy in male rats. Front Psychol. 2020;11:826. doi: 10.3389/fpsyg.2020.00826
- Yakushina ND, Thiessen IYu, Lebedev A, et al. Effect of intranasal ghrelin administration on the compulsive behavior patterns and the level of anxiety after the vital stress exposure to rats. Reviews on Clinical Pharmacology and Drug Therapy. 2017;15(3):28–37. EDN: ZHRRKX doi: 10.17816/RCF15328-37
- Toropova KA, Ivashkina OI, Anokhin KV. Post-traumatic stress disorder: theoretical framework and animal models. I.P. Pavlov Journal of Higher Nervous Activity. 2021;71(6):735–759. EDN: BQFNRL doi: 10.31857/S0044467721060113
- Tissen IYu, Lebedev AA, Tsikunov SG, Shabanov PD. Kisspeptin reduces sexual dysfunction in a rat model of posttraumatic stress disorder. Psychopharmacology and biological narcology. 2023;14(4):237–244. EDN: WVXICW doi: 10.17816/phbn623033
- Tissen I, Magarramova L, Badrutdinov R, et al. Possible role of kisspeptin in testosterone-independent regulation of sexual motivation in male rats. Georgian Med News. 2022;(323):122–125.
- Arestova IYu, Sharonova EG, Kupriyanova MYu. Morphological features of spermatozoa of male white rats under experimental stress. Siberian Journal of Life Sciences and Agriculture. 2021;13(2):225–236. EDN: ZFBWER doi: 10.12731/2658-6649-2021-13-2-225-236
- Loginov PV. The influence of immobilization stress on the functional state of the testes of white rats. International Journal of Applied and Fundamental Research. 2014;10(1):149–150. (In Russ.) EDN: SMPNQZ
- Iovino M, Messana T, Iovino E, et al. Neuroendocrine mechanisms involved in male sexual and emotional behavior. Endocr Metab Immune Disord Drug Targets. 2019;19(4):472–480. doi: 10.2174/1871530319666190131155310
- Loginov PV, Nikolaev AA. Functional state of the reproductive apparatus of male white rats under conditions of immobilization stress. Fundamental Research. 2014;9(10):2213–2217. EDN: SOCJTH
- Rønnekleiv OK, Kelly MJ. Kisspeptin excitation of GnRH neurons. Adv Exp Med Biol. 2013;784:113–131. doi: 10.1007/978-1-4614-6199-9_6
- Tng EL. Kisspeptin signalling and its roles in humans. J Singapore Med. 2015;56(12):649–656. doi: 10.11622/smedj.2015183
- Mills EG, Dhillo WS, Comninos AN. Kisspeptin and the control of emotions, mood and reproductive behavior. J Endocrinol. 2018;239(1):R1–R12. doi: 10.1530/JOE-18-0269
- Tena-Sempere M. Roles of kisspeptins in the control of hypothalamic-gonadotropic function: focus on sexual differentiation and puberty onset. Endocr Dev. 2010;17:52–62. doi: 10.1159/000262528
- Edouard GA, Mills KT, Comninos AN. Kisspeptin as a behavioral hormone. Semin Reprod Med. 2019;37(2):56–63. doi: 10.1055/s-0039-3400239
- Magarramova L, Tissen I, Blazhenko A, et al. Kisspeptin is testosterone independent regulator of sexual motivation in male rats. Journal of Experimental Biology and Agricultural Sciences. 2022;10(1):131–134. EDN: FMCJRI doi: 10.18006/2022.10(1).131.134
- Tissen I, Magarramova L, Kraskova A, et al. P.578 Kisspeptin steroid-independently regulated sexual motivation in male rats. European Neuropsychopharmacology. 2019;29(Suppl. 6):S404–S405. doi: 10.1016/j.euroneuro.2019.09.577
- Alexander N, Matthew B, Amar J, et al. Kisspeptin modulates sexual and emotional brain processing in humans. J Clin Invest. 2017;127(2):709–719. doi: 10.1172/JCI89519
- Trofimov AN, Litvinova MV, Schwartz AP, et al. Molecular mechanisms of transport of substances through the blood-brain barrier as targets for pharmacological action. Part 1. Structural and functional organization of BBB. Pharmacy Formulas. 2022;4(2):60–69. doi: 10.17816/phf109914
- d’Anglemont de Tassigny X, Ackroyd KJ, Chatzidaki EE, Colledge WH. Kisspeptin signaling is required for peripheral but not central stimulation of gonadotropin-releasing hormone neurons by NMDA. J Neurosci. 2010;30(25):8581–8590. doi: 10.1523/JNEUROSCI.5486-09.2010
- Litvinova MV, Trofimov AN, Shabanov PD, et al. Molecular mechanisms of transport of substances through the blood-brain barrier as targets for pharmacological effects. Part 2. Modern methods of delivering pharmacological agents to the central nervous system. Pharmacy Formulas. 2022;4(3):82–96. EDN: QSCSBH doi: 10.17816/phf120109
- Amstislavskaya TG, Khrapova MV. The influence of genotype on the behavioral and hormonal components of sexual activation in male mice. Bulletin of experimental biology and medicine. 2002;133(5):475–477. EDN: LHHEJL doi: 10.1023/A:1019865822028
- Amstislavskaya TG, Osipov KV. Sexual activation of male rats: behavior and hormonal response. Bulletin of the Siberian Branch of the Russian Academy of Medical Sciences. 2003;23(3):112–114. EDN: GXTGZL
- Sood A, Chaudhari PR, Tiwari P, et.al. Acute immobilization stress evokes sexually dimorphic peripheral and hippocampal neuroimmune responses in adult rats. Neurosci Lett. 2022;789:136871. doi: 10.1016/j.neulet.2022.136871
- Bayramov AA, Kudryavtseva TA, Torkunova OV. Neurochemical aspects of cholinergic modulation of sexual behavior during immobilization stress. Psychopharmacology and Biological Narcology. 2006;6(1–2):1183–1190. EDN: HSQQZR
- Nemets VV, Shmurak VI, Sobolev, et al. The influence of short-term and long-term uncontrolled stress on animals of dominant and subordinate social status with different types of stress response. Physiological Journal named after I.M. Sechenov. 2019;105(5):608–618. EDN: FTTFHH doi: 10.1134/S0869813919050066
- Bilban M, Ghaffari-Tabrizi N, Hintermann E, et al. Kisspeptin-10 a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J Cell Sci. 2004;117(Pt 8):1319–1328. doi: 10.1242/jcs.00971
- Smith JT, Dungan HM, Stoll EA, et al. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology. 2005;146(7):2976–2984. doi: 10.1210/en.2005-0323
- Irwig MS, Fraley GS, Smith JT, et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology. 2004;80(4):264–272. doi: 10.1159/000083140
- Dhillo WS, Chaudhri OB, Patterson M, et al. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J Clin Endocrinol Metab. 2005;90(12):6609–6615. doi: 10.1210/jc.2005-1468
- Han SK, Gottsch ML, Lee KJ. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci. 2005;25(49):11349–11356. doi: 10.1523/JNEUROSCI.3328-05.2005
- Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone (GnRH) neurons. Endocrinology. 2006:147(12):5817–5825. doi: 10.1210/en.2006-0787
- Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol. 2006;18(4):298–303. doi: 10.1111/j.1365-2826.2006.01417.x
- Richard N, Galmiche G, Corvaisier S, et al. KiSS-1 and GPR54 genes are co-expressed in rat gonadotrophs and differentially regulated in vivo by oestradiol and gonadotrophin-releasing hormone. J Neuroendocrinol. 2008;20:381–393. doi: 10.1111/j.1365-2826.2008.01653.x
- Roa J, Vigo E, Castellano JM, et al. Opposite roles of estrogen receptor (ER)-alpha and ERbeta in the modulation of luteinizing hormone responses to kisspeptin in the female rat: implications for the generation of the preovulatory surge. Endocrinology. 2008;149(4):1627–1637. doi: 10.1210/en.2007-1540
- Kauffman AS, Gottsch ML, Roa J, et al. Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology. 2007;148(4):1774–1783. doi: 10.1210/en.2006-1540
- Simerly RB. Hormonal control of the development and regulation of tyrosine hydroxylase expression within a sexually dimorphic population of dopaminergic cells in the hypothalamus. Brain Res Mol Brain Res. 1989;6(4):297–310. doi: 10.1016/0169-328x(89)90075-2
- Kondo Y, Arai Y. Functional association between the medial amygdala and the medial preoptic area in regulation of mating behavior in the male rat. Physiol Behav. 1995;57:69–73. doi: 10.1016/0031-9384(94)00205-j
- Lehman MN, Winans SS, Powers JB. Medial nucleus of the amygdala mediates chemosensory control of male hamster sexual behavior. Science. 1980;210(4469):557–560. doi: 10.1126/science.7423209
- Bialy M, Sachs BD. Androgen implants in medial amygdala briefly maintain noncontact erection in castrated male rats. Horm Behav. 2002;42(3):345–355. doi: 10.1006/hbeh.2002.1821
- Thiessen IY, Chepik PA, Lebedev AA, et al. Conditioned place preference of kisspeptin-10. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(1):47–53. EDN: SSEPQB doi: 10.17816/RCF19147-53
- Le Moëne O, Ågmo A. Modeling human sexual motivation in rodents: some caveats. J Behav Neurosci. 2019;13:187. doi: 10.3389/fnbeh.2019.00187
Supplementary files
