The molecular-genetic research of gap junction intercellular communications in colorectal cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This article presents the comparative analysis of perspectives in the field of molecular-genetic research of gap junction intercellular communications (GJIC) in colorectal cancer and other malignant tumors. The current investigations are characterized by profound theoretical studies and experimental research of GJIC antitumor properties. Special interest is rewarding to in vitro and in vivo experiments showed that different cancer cells transfected with GJIC-connexin genes reduced their tumorigenicity significantly. Some somatic connexin gene mutations were recently been revealed at the late stage of sporadic human colorectal cancer. This fact let us suggest that more detail molecular-genetic investigations of connexin genes in malignant tumors further could be a perspective line of cancer research. The results of the investigations could be demanded for the development of early diagnosis and gene therapy of malignant diseases.

About the authors

N. A. Iatckii

I. I. Pavlov State Medical University

Author for correspondence.
Email: shabanov@mail.rcom.ru

член-корреспондент РАМН

Russian Federation, St. Petersburg, 197022

S. V. Vasil'ev

I. I. Pavlov State Medical University

Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg, 197022

D. E. Popov

I. I. Pavlov State Medical University

Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg, 197022

M. V. Dubina

I. I. Pavlov State Medical University

Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg, 197022

References

  1. Бочков Н. П. Клиническая генетика. М.: Гэотар-Мед, 2002. 448 с.
  2. Крутовских В. А. Роль нарушений межклеточных щелевых контактов в генезе рака и других патологических состояний // Архив патол. 2000. № 1.С. 3-7.
  3. Орлова Р. В. Новые лекарственные средства в лечении колоректального рака // Практ. онкол. 2002. Т. 3. № 4. С. 273-281.
  4. Ai Z., Fischer A., Spray D. С. et al. Wnt-1 regulation of connexin43 in cardiac myocytes // The Journ. of clinical investigation. 2000. Vol. 105. № 2. P. 161-171.
  5. Balmain A., Gray J., Ponder B. The genetics and genomics of cancer // Nature Genetics. 2003. Vol. 33 (Suppl.). P. 23 8-244.
  6. Chen S. C., Pelletier D. B., Ao P, Boynton A. L. Connexin 43 reverses the phenotype of transformed cells and alters their expression of cyclin/cyclin- dependent kinases // Cell growth and differentiation. 1995. Vol. 6. №6. P. 681-690.
  7. Chung-Faye G. A., Kerr D. J. Innovative treatment for colon cancer // British Med. Journ. 2000. Vol. 321. P. 1397-1399.
  8. Dubina M. V., latckii N. A., Popov D. E. et al. Connexin 43, but not connexin 32, is mutated at advanced stages of human sporadic colon cancer // Oncogene. 2002. Vol. 21. № 32. P. 4992-4996.
  9. Duffy H. S., Sorgen P. L., Girvin M. E. et al. pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains // J. Biol. Chern. 2002. Vol. 277. № 39. P. 3 6706-3 67014.
  10. Evans W. El., Martin P E. Gap junctions: structure and function // Molecular membrane biology. 2002. Vol. 19. № 2. P. 121-136.
  11. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis // Cell. 1990. Vol. 61. № 5. P. 759-767.
  12. Fernstrom M. J., Koffler L. D., Abou-Rjaily G. et al. Neoplastic reversal of human ovarian carcinoma cells transfected with connexin 43 // Exp. Mol. Pathol. 2002. Vol. 73. № 1. P. 54-60.
  13. Furlan F., Lecanda F., Screen J., Civitelli R. Proliferation, differentiation and apoptosis in connexin 43-null osteoblasts // Cell. Commun. Adhes. 2001. Vol. 8. № 4-6. P. 3 67-3 71.
  14. Giepmans B. N., Moolenaar W. H. The gap junction protein connexin 43 interacts with the second PDZ domain of the zona occludens-1 protein // Current biology. 1998. Vol. 8. № 16. P. 931-934.
  15. Grady W. M., Markowitz S. D. Genetic and epigenetic alterations in colon cancer // Annual Rev. of Genomics and Human Genetics. 2002. Vol. 3. P. 101-128.
  16. Graved C. R., Harkins-Perry S. R., Acevedo L. G., Farnham P. J. Identification and characterization of CRG-L2, a new marker for liver tumor development // Oncogene. 2003. Vol. 22. № 11. P. 1730-1736.
  17. Haier J., Nasralla M., Nicolson G. L. Cell surface molecules and their prognostic values in assessing colorectal carcinomas // Annals of Surgery. 2000. Vol. 231. № 1. P. 11-24.
  18. Hanahan D., Weinberg R. A. The hallmarks of cancer // Cell. 2000. Vol. 100. № 1. P. 5 7-70.
  19. Hernandez-Blazquez E. J., Joazeiro P P, Omori Y., Yamasaki H. Control of intracellular movement of connexins by E-cadherin in murine skin papilloma cells // Exp. Cell. Res. 2001. Vol. 270. P. 235-247.
  20. Hossain M. Z., Boynton A. L. Regulation of Cx43 gap junctions: the gatekeeper and the password // Science Signal Transduction Knowledge Environment. 2000. Vol. 54. P. PE1.
  21. Kojima T., Sawada N., Chiba H. et al. Induction of tight junctions in human connexin 32 (hCx32)- transfected mouse hepatocytes: connexin 32 interacts with occludin // Biochem Biophys. Res. Commun. 1999. Vol. 266. № 1. P. 222-229.
  22. Krutovskikh V., Mazzoleni G., Mironov N. et al. Altered homologous and heterologous gap-junctional intercellular communication in primary human liver tumors associated with aberrant protein localization but not gene mutation of connexin 32 // Int. J. Cancer. 1994. Vol. 56. № 1. P. 87-94.
  23. Krutovskikh V., Mironov N., Yamasaki H. Human connexin 37 is polymorphic but not mutated in tumours // Carcinogenesis. 1996. Vol. 17. № 8. P. 1761-1763.
  24. Krutovskikh V. Implication of direct host-tumor intercellular interactions in non-immune host resistance to neoplastic growth // Semin. Cancer Biol. 2002. Vol. 12. № 4. P. 267-276.
  25. Krutovskikh V. A., Piccoli C., Yamasaki H., Yamasaki H. Gap junction intercellular communication propagates cell death in cancerous cells // Oncogene. 2002. Vol. 21. № 13. P. 1989-1999.
  26. Laird D. W., Fistouris P., Batist G. et al. Deficiency of connexin 43 gap junctions is an independent marker for breast tumors // Cancer Res. 1999. Vol. 59. № 16. P. 4104-4110.
  27. Liotta L., Petricoin E. Molecular profiling of human cancer // Nature Rev. Genetics. 2000. Vol. 1. № l.P. 48-56.
  28. Loewenstein W. R. The cell-to-cell channel of gap junctions // Cell. 1987. Vol. 48. № 5. P. 725-726.
  29. Lynch J. P., Hoops T. C. The genetic pathogenesis of colorectal cancer // Hematology and Oncology Clinics of North America. 2002. Vol. 16. № 4. P. 775-810.
  30. Mesnil M., Krutovskikh V., Piccoli C. et al. Negative growth control of HeLa cells by connexin genes: connexin species specificity // Cancer Res. 1995. Vol. 55. № 3. P. 629-639.
  31. Muramatsu A., Iwai M., Morikawa T. et al. Influence of transfection with connexin 26 gene on malignant potential of human hepatoma cells // Carcinogenesis. 2002. Vol. 23. № 2. P. 351-358.
  32. Naus С. C. Gap junctions and tumour progression // Canadian J. Physiol. Pharmacol. 2002. Vol. 80. № 2. P. 136-141.
  33. Omori Y., Yamasaki H. Mutated connexin 43 proteins inhibit rat glioma cell growth suppression mediated by wild-type connexin 43 in a dominant-negative manner // Int. J. Cancer. 1998. Vol. 78. № 4. P. 446-453.
  34. Plotkin L. L., Bellido T. Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of connexin 43 // Cell. Commun. Adhes. 2001. Vol. 8. № 4-6. P. 3 77-3 82.
  35. Rose B., Mehta P. P., Loewenstein W. R. Gapjunction protein gene suppresses tumorigenicity // Carcinogenesis. 1993. Vol. 14. № 5. P. 1073-1075.
  36. Saito T., Krutovskikh V., Marion M. J. et al. Human hemangiosarcomas have a common polymorphism but no mutations in the connexin 37 gene // Int. J. Cancer. 2000. Vol. 86. № 1. P. 67-70.
  37. Sanson M., Marcaud V., Robin E. et al. Connexin 43-mediated bystander effect in two rat glioma cell models // Cancer Gene Ther. 2002. Vol. 9. № 2. P. 149-155.
  38. Schlemmer S. R., Novotny D. B., Kaufman D. G. Changes in connexin 43 protein expression in human endometrial carcinoma // Exp. Mol. Pathol. 1999. Vol. 67. № 3. P. 15 0-163.
  39. Singal R., Tu Z. J., Vanwert J. M. et al. Modulation of the connexin 26 tumor suppressor gene expression through methylation in human mammary epithelial cell lines // Anticancer Research. 2000. Vol. 20. P. 59-64.
  40. Soroceanu L., Manning T. J., Sontheimer H. Reduced expression of connexin-43 and functional gap junction coupling in human gliomas //Glia. 2001. Vol. 33. № 2. P. 107-117.
  41. Trosko J. E. The role of stem cells and gap junctional intercellular communication in carcinogenesis // J. Biochem. Molecular Biology. 2003. Vol. 36. № 1. P. 43-48.
  42. Uthoff S. M., Duchrow M., Schmidt M. H. et al. VEGF isoforms and mutations in human colorectal cancer / Int. J. Cancer. 2002. Vol. 101. № 1. P. 32-36.
  43. Vincis P. Cancer as an evolutionary process at the cell level: an epidemiological perspective // Carcinogenesis. 2003. Vol. 24. № 1. P. 1-6.
  44. Vogelstein B., Fearon E. R., Hamilton S. R. et al. Genetic alterations during colorectal-tumor development // The New England J. Medicine. 1988. Vol. 319. № 9. P. 525-532.
  45. Xia Z., Pu P, Huang Q., Zhang Y., Jiang Y, You Y. Connexin 43 gene in the in vivo treatment of cerebral glioma in C6 rats // Chinese J. Oncol. 2002. Vol. 24. № 3. P. 212-214.
  46. Yamasaki H., Omori Y., Zaidan-Dagli M. L. et al. Genetic and epigenetic changes of intercellular communication genes during multistage carcinogenesis // Cancer Detection Prevention. 1999. Vol. 23. № 4. P. 273-279.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2003 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.