Interferon induction: New approaches in generating functional inductors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Interferons type (IFN-a/p) I are the most important factors of a body defense against viral and bacterial infections. Indeed, these proteins induction create first line of protection against infections and due to these functions are used in medical practice for treatment of acute and chronic viral diseases. However, long-term application of a recombinant IFN-a/p leads to understanding of practical demand of interferon inducers. Physiological induction of endogenous IFN-a/p have evident preference in comparison with injection of a recombinant IFN-a/p preparations in high dosages, as it’s apply usually in treatment of hepatitis C or cancer. Physiological induction of IFN-a/p is based on utilization of a natural pathways of activation of IFN-a/p gene’s expression, specific set of cellular receptors and cellular signal systems, involved in genetic control of innate immune response. Therefore, for development of a new approaches in creation of an interferon inducers fun­damental research had been needed in a field of physiological pathways of interferon regulation and mecha­nisms of down regulation and inhibition of a cellular antiviral defense. IFN type I and II have the main contri­bution in this defense as a key factors of innate immune response. As a result of these studies structure and function of IFN-a/p, their genes, IFN-a/p - receptor interaction, and intracellular signaling cascade involved in gene regulation are deciphered.

Among leading IFN-inductors are dibasol, imiquimod, cycloferon and ds-RNA preparations synthetic and natural origin. Benzimidazole derivatives had been studied in the Institute of Experimental medicine from 50th years till 70th. As a result of these studies dibasol and imiquimod analogues were approved for medical application. The same could be noted for acridone derivatives and origin of cycloferon. This preparation is rather unique and belongs to acridine’s set of compounds, well known in international pharmacology. First studies of acridone derivatives were initiated in the Institute of Experimental medicine at 70th years in a frame of investigation anti-tumor antibiotic actinomycine D acricine - ring analogues/ All of these compounds were synthesized in Department of Dye chemistry Leningrad’s Institute of Technology. Most of those compounds elicited wide spectrum of biological activities. Key activity of those compounds was identified as a unique property: high capability to induce endogenous interferon synthesis. These compounds lacked capability to intercalate to the DNA molecules. Later several compounds were approved as strong an interferon inducers, for activation of a first line protection against viral infections

About the authors

О. I. Kiselev

Research institute of influenza of the RAMS

Email: shabanov@mail.rcom.ru

академик РАМН

Russian Federation, St. Petersburg

В. I. Tkachenko

Research institute of Experimental Medicine of the RAMS

Email: shabanov@mail.rcom.ru

академик РАМН

Russian Federation, St. Petersburg

F. I. Ershov

SRIEM named after N. F. Gamalei

Author for correspondence.
Email: shabanov@mail.rcom.ru

академик РАМН

Russian Federation, Moscow

References

  1. Ершов Ф. И., Новохатский А. С. Интерферон и его индукторы. М., 1980.
  2. Индукторы интерферона / Под ред. В. М. Жданова, Ф. И. Ершова. М., 1982.
  3. Ершов Ф. И. Система интерферона в норме и при патологии. М., 1982.
  4. Ершов Ф. И., Киселев О. И. Интерфероны и их индукторы: от молекулы до лекарства. М.: Медицина, 2005 (в печати).
  5. Серебряная Н. Б., Кетлинский С. А. Роль интерферонов 1-го типа в регуляции иммунной системы // Мед. акад. журн. 2004. Т. 4. № 2. С. 3-19.
  6. Sen G. С. Viruses and interferons // Ann. Rev. of Microbiol. 2001. Vol. 55. P. 255-281.
  7. Biron C. A. Interferons а и p as immune modula¬tors - a new look // Immunity. 2000. Vol. 14. P. 661-664.
  8. Kontsekova E., Liptakova H., Much V., Kontsek P. Structural and functional heterogeneity of the amino-terminal receptor-binding domain of human interferon-alpha 2 // Inter. J. of Biological. Macromolecules. 1999. Vol. 24. P. 11-14.
  9. Hu R., Btkisz J., Schmeisser H, McPhie P, Zo- on K. Human IFN-a protein engineering: The amino acid residues at position 86 and 90 are important for antiproliferative activity // J. of Immunol. 2001. Vol. 167. P. 1482-1489.
  10. Van Pesch V, Michiels T. Characterization of interferon-a 13, a novel constitutive mirine interferon-a subtype // 2003. Vol. 278. № 47. P. 46321-46328.
  11. LaFleur D. W, Nardelli B., Tsareva T., Mather D., FengP. et al. Interferon-к, a novel type I interferon expressed in human keratinocytes // J. Biol. Chem. 2001. Vol. 276. P. 39765-39711.
  12. Gale M., Tan S.-L., Wambach M., Katze M. G. Interaction of the interferon-induced PKR protein-kinase with inhibitory proteins P58IPK and vaccinia virus K3L is mediated with by unique domains: implications for kinase regulation // Mol. Cell. Biol. 1996. Vol. 16. P. 4172-4181.
  13. Sullivan N., Yang Z-Y, Nabel G. J. Ebola virus pathogenesis: implications for vaccines and therapies // J. of Virology. 2003. Vol. 77. P. 9733-9737.
  14. Киселев О. И., Деева Э. Г., Слита А. А., Платонов В. Г. Антивирусные препараты для лечения гриппа и ОРЗ. Дизайн препаратов на основе полимерных носителей. СПб., 2000. 131 с.
  15. Деева Э. Г, Киселев О. И., Павловская Я. В. с соавт. Структурно-функциональный анализ биологической активности производных акридина // Вести. РАМН. 2004.
  16. Гайцхоки В. С., Киселев О. И., Шапошников В. Д. О связывании актиномицина Д с ДНК некоторых перевиваемых опухолей // Докл. Академии Наук СССР. 1971. Т. 196. С. 459-462.
  17. Деева Э. Г. Сравнительный анализ противогриппозной активности соединений ряда азолоазинов, флуоренов и акридонов: Автореф. дис. ... канд. мед. наук. СПб., 2000. С. 16-22.
  18. Ершов Ф. И., Чижов Н. П., Тазулахова Э. Б. Противовирусные средства. СПб., 1993. С. 11-15.
  19. Ершова Ф. И., Романцов М. Г. Циклоферон: от эксперимента - в клинику. М., 1997.
  20. Машковский М. Д. Лекарственные средства. М., 2001. С. 340-341, 389-390, 435-436.
  21. Навашин С. М., Фомина И. П., Егоров Л. В., Терентьева Т Г. Противоопухолевый антибиотик Дактиномицин: Экспериментальные и клинические данные // ЭИ. Новые лекарственные препараты. 1984. № 3. С. 2-9.
  22. Павловская Я. В., Киселев О. И., ЛитвинчукЛ. Ф. и др. Изучение противовирусной активности препарата Циклорема, обладающего прямой противовирусной активностью и способностью к индукции интерферона // Тезисы научной конференции «Новые препараты в профилактике, терапии и диагностике вирусных инфекций». СПб., 2002. С. 15-16.
  23. Романцов М. Г. Циклоферон: применение в клинике. М.-СПб., 1997. С. 9-11.
  24. Adams A., Guss J. М„ Charles A. DACA (N-[2-(dimethylaminoiethylacridine-4-carboxamide) - selectivity for Topoisomerase I and Topoisomerase II among acridine derivatives // Eur. J. Cancer. 1996. Vol. 32A. P. 708-714.
  25. Adams A., Guss J. M., Charles A. Crystal structure of the Topoisomerase II poison 9-Amino- [N-(2-di methyl am ino)ethyl]acridine-4-carboxamide bound to the DNA hexanucleotide d(CGTACG)2 // J. Biochem. 1999. Vol. 38. № 29. P. 9221-923 3.
  26. Baguley В. C., Zhuang L., Marshall E. M. Experimental solid tumour activity of N-[2-idimethylamino)ethyl]acridine-4-carboxamide // Cancer Chemother. Pharmacol. 1995. Vol. 36. P. 244-248.
  27. Berger J. M. G., Gamblin S. J., Harrison S. C.f Wang J. C. Structure and mechanism of DNA Topoisomerase II // Nature. 1996. Vol. 379. P. 225-232.
  28. Carlson С. B., Beal P. A. Solid-phase synthesis of acridine-based threading intercalate peptides // Bioorg. & Medicin. Chern. Letters. 2000. Vol. 10. P. 1979-1982.
  29. Cholody IV. M., Hernandez L., Hassner L., Scudiero D. A., Djurickovic D. B., Michejda C. J. Bisimidazoacridones and related compounds: new antineoplastic agents with high selectivityagainst colon tumors // J. Med. Chern. 1995. Vol. 38. P. 3043-3052.
  30. Credmieux A., Chevalier J., Sharples D., Berny H, Galy A. M., Brouant R, Galy J. R, Barbe J. Antimicrobial activity of 9-oxo and 9-thio-acridines: correlation with intercalation into DNA and effects on macromolecular biosynthesis // Res. Microbiol. 1995. Vol. 146. P. 73-83.
  31. Fujiwara M., Okamoto M., Okamoto M., Watanabe M., Machida H, Shigeta S, Konno K, Yokota T., Baba M. Acridone derivatives are selective inhibitors of HIV replication in chronically infected cells // Antiviral. Res. 1999. Vol. 43(3). P. 189-199.
  32. Kawai S., Tomono Y, Katase E., Ogawa K, Yano M., Takemura Y, Ju-ichi M., Ito C., Furukawa H Acridones as inducers of HL-60 cell differentiation // Leukemia Res. 1999. Vol. 23. P. 263-269.
  33. Dockrell D. H, Kinghorn G. R. Imiquimod and resiquimod as novel immunomodulators // J. of Antimicrobial. Chemotherapy. 2001. Vol. 48. P. 751-755.
  34. Dunne A.t O'Neil L. A. J. The interleukin-1 receptor / Toll-like receptor superfamily // Science’s stke. www.stke.org/cgi/content/full/sigtrans z2003/171 /геЗ.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2005 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.