Antimicrobial peptides as molecular factors of immu¬nity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Antimicrobial peptides (defensins, protegrins, cecropins, cathelicidins etc) are endogenous animal antibi­otic molecules which kill grampositive and gramnegative bacteria, fungi, protozoa and enveloped viruses. They are cationic and amphipathic peptides consisted of 12-50 amino acid residues. Antimicrobial peptides inactivate microorganisms by perforation and disruption of target cell membranes. They have also been impli­cated in immunity as modulators of endocytosis, chemotaxis and degranulation of mast cells upon phagocy­tosis and inflammation, and mediators of neutroendocrineimmune interaction.

About the authors

V. N. Kokryakov

Research Institute of Experimental Medicine RAMS

Author for correspondence.
Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg

G. M. Aleshina

Research Institute of Experimental Medicine RAMS

Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg

О. V. Shamova

Research Institute of Experimental Medicine RAMS

Email: shabanov@mail.rcom.ru
Russian Federation, St. Petersburg

References

  1. Горизонтов П. Д., Белоусова О. И., Федотова Н. И. Стресс и система крови. М.: Медицина, 1983. 240 с.
  2. Кокряков В. Н. Биология антибиотиков животного происхождения. СПб.: Наука, 1999. 162 с.
  3. Кокряков В. Н., Пигаревскии В. Е., Тарос Л. Ю. и др. Антивирусные свойства дефенсинов при экспериментальной герпетической инфекции // Патоморфология опухолей и фоновых заболеваний. Л., 1989. С. 122-124.
  4. Корнева Е. А., Шхинек Э. К. Гормоны и иммунная система. Л.: Наука, 1988. 251 с.
  5. Кудряшов Б. А., Кондашевская М. В., Ляпина Л. А. и др. Эффект многократного внутри-мышечного введения дефенсина на противосвертывающую систему и ангиоархитектонику скелетной мыщцы // Докл. АН СССР. 1989. Т. 304. № 2. С. 494-498.
  6. Мечников И. И. Невосприимчивость в инфекционных болезнях. СПб., 1903. 604 с.
  7. Пигаревскии В. Е. Полиморфоядерный лейкоцит и макрофаг в реакциях гиперчувствительности // Арх. патол. 1983. № 11. С. 14-22.
  8. Шамова О. В., Лесникова М. П., Кокряков В. Н. и др. Действие дефенсинов на уровень кортикостерона в крови и иммунный ответ при стрессе // Бюл. экспер. биол. и мед. 1993. Т. 115. № 6. С. 646-649.
  9. Ager berth В., Gunne И, Odeberg J. et al. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92. P. 195-199.
  10. Bateman A., Sigh A., Krai Th., Solomon S. The immune-hypothalamic-pituitary-adrenal axis // Endocrine Revs. 1989. Vol. 10. № 1. P. 92-112.
  11. Biragyn A., Surenhu M., Yang D. et al. Mediators of innate immunity that target immature, but not mature, dendric cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens // J. Immunol. 2001. Vol. 167. P. 6644-665 3.
  12. Boman H. G. Peptide antibiotics and their role in innate immunity //Annu. Rev. Immunol. 1995. Vol. 13. P. 61-92.
  13. Bulet P, Hetru C., Dimarcq J.-L, Hoffmann D. Antimicrobial peptides in insects; structure and function // Develop. Compar. Immunol. 1999. Vol. 23. P. 329-344.
  14. Charlet M., Chernysh S., Philippe H. et al. Innate immunity. Isolation of several cysteine rich antimicrobial peptides from the blood of a mollusc Mytilus edulis I I J. Biol. Chern. 1996. Vol. 271. № 36. P. 21808-21813.
  15. Chertov O., Michiel D. E, Xu L. et al. Identification of defensin-1, defensin-2, and CFP37/ azurocidin as T-cell chemoattractant protein released from interleukin-8-stimulated neu¬trophils // J. Biol. Chem. 1996. Vol. 271. № 6. P. 293 5-2940.
  16. Fleischmann J., Seis ted M. E., Lehrer R. I. Opsonic activity of MCP-I and MCP-2 cationic peptides from rabbit alveolar macrophages // Diagn. Microbiol. Dis. 1985. Vol. 3. P. 233-242.
  17. Frank R. W., Gennaro R., Schneider К et al. Amino acid sequences of two proline-rich bactenecins // J. Biol. Chem. 1990. Vol. 265. № 31. P. 18871-18874.
  18. Harwig S. S., Swiderek К. M., Kokryakov V. N. et al. Gallinacins. Cysteine-rich antimicrobial peptides of chicken leukocytes // FEBS Lett. 1994. Vol. 342. P. 281-285.
  19. Higazi A. A., Barghouti I. I., Abu-Much R. Identification of an inhibitor of tissue-type plasminogen activator-mediated fibrinolysis in human neutrophils. A role for defensin // J. Biol. Chem. 1995. Vol. 270. P. 9472-9477.
  20. Higazi A. A., Ganz T., Kariko K. et al. Defensins modulates tissue-type plasminogen activator and plasminogen binding to fibrin and endothelian cells // J. Biol. Chem. 1996. Vol. 271. № 30. P. 17650-1765 5.
  21. Kokryakov V. N., HarwigS. S. L., Panyutich E. A. et al. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins // FEBS Lett. 1993. Vol. 327. № 2. P. 231-236.
  22. Lehrer R. L, Ganz T. Antimicrobial peptides in mammalian and insect host defence // Curr. Opin. Immunol. 1999. Vol. 11. № 1. P. 23-27.
  23. Lehrer R. L, Lichtenstein A. K, Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells //Annu. Rev. Immunol. 1993. Vol. 11. P. 105-128.
  24. Leonova L., Kokryakov V., Aleshina G. et al. Circular minidefensins and posttranslational generation of molecular diversity // J. Leukoc. Biol. 2001. Vol. 70. P. 461-464.
  25. Lillard J. W., Boyaka P N., Chertov O. et al. Mechanisms for induction of acquired host immunity by neutrophil peptide defensins // Proc. Natl. Acad. Sci. USA. 1999. Vol. 96. P. 651-656.
  26. Matsuzaki К. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachypplesins as archetypes // Biochim. Biophys. Acta. 1999. Vol. 1462. P. 1-10.
  27. Ranadive N. S., Cochrane C. G. Isolation and characterization of permeability factors from rabbit neutrophils // J. Exp. Med. 1968. Vol. 128. P. 605-622.
  28. Schroder J. M., Harder J. Human beta-defens in-2 // Int. J. Biochem. Cell Biol. 1999. Vol. 31. P. 645-651.
  29. Scott M. G., Vreugdenhil A. C., Buurman W A., Gold M. R. Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein // J. Immunol. 2000. Vol. 164. P. 549-553.
  30. Shai Y. Mechanism of binding, insertion and destabilization of phospholipid bilayer membranes by helical antimicrobial and non-selective membrane-lytic peptides // Biochim. Biophys. Acta. 1999. Vol. 1462. P. 5 5-70.
  31. Shamova О. V., Brogden K. A., Zhao C. et al. Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. // Infection and Immunity. 1999. Vol. 67. № 8. P. 4106-4111.
  32. Shamova О. V., Orlov D. S., Kokryakov V. N. et al. Effect of protegrins on ACTH-induced rise of corticosterone level in mice // Thesis of ICONE’95. July 17-24. St. Petersburg. 1995. P. 170.
  33. Solomon S. Corticostatins // ТЕМ. 1993. Vol. 4. № 8. P. 260-264.
  34. Tang Y-Q., Yuan J., Osapay G. et al. A cyclic antimicrobial peptide produced in primate leukocytes by the legation of the two truncated a-defensins // Science. 1999. Vol. 286. P. 498-502.
  35. Terr it о M. C., Ganz T, Seis ted M. E., Lehrer R. I. Monocyte chemotactic activity of defensins from human neutrophils // J. Clin. Invest. 1989. Vol. 84. № 6. P. 2017-2020.
  36. Tominaga T, Eukata J., Naito Y. et al. Effects of corticostatin-1 on rat adrenal cells in vitro // J. Endocrinol. 1990. Vol. 125. P. 287-292.
  37. Underhill D. M., Ozynsky A. Toll-like receptors: key mediators of microbe detection // Curr. Opin. Immunol. 2002. Vol. 14. P. 103-110.
  38. Van Wetering S., Mannesse-Lazeroms S. P., van Sterkenburg M. A. et al. Effect of defensins on interleukin-8 synthesis in airway epithelial cells// Am. J. Physiol. 1997. Vol. 272. P. L888-L896.
  39. Wade D., Boman A., Wahlin B. et al. All D-amino acid containing channel-forming antibiotic peptides//Proc. Natl. Acad. Sci. USA. 1990. Vol. 87. P. 4761-4765.
  40. White S. H., Wimley W. C., Selsted M. E. Structure, function, and membrane integration of defensins // Curr. Opin. Struct. Biol. 1995. Vol. 5. P. 521-527.
  41. Yamashita T, Saito K. Purification, primary structure and biological activity of guinea pig neutrophil cationic peptides // Infect. Immunol. 1989. Vol. 5 7. № 8. P. 2405-2409.
  42. Yang D., Chertov O., Bykovskaia S. N. et al. B-defensins: linking innate and adaptive immunity through dendritic and T-cell CCR6 // Science. 1999. Vol. 286. P. 525-528.
  43. Zanetti M., Gennaro R., Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain // FEBS Lett. 1995. Vol. 374. P. 1-5.
  44. Zeya H. L, Spitznagel J. K. Antibacterial and enzymatic basic proteins from leukocyte lysosomes: separation and identification // Science. 1963. Vol. 142. P. 1085-1087.
  45. Zhu Q., Hu J., Mulay S. et al. Isolation and structure of corticostatic peptides from rabbit fetal and adult lung // Proc. Natl. Acad. Sci. USA. 1988. № 85. P. 592-596.
  46. Zhu Q., Singh A., Bateman A. et al. The corticostatin anti-ACTH and cytotoxic activity of peptides isolated from fetal, adult and tumorbearing lung // J. Steroid Biochem. 1987. № 27. P. 1017-1423.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.