СТРУКТУРА АЛЬБУМИНА И ТРАНСПОРТ ЛЕКАРСТВ



Цитировать

Полный текст

Аннотация

В обзоре отражены современные представления о структуре сывороточного альбумина человека в контексте его транспортной функции. Дана характеристика основных центров связывания лекарственных веществ и жирных кислот. Рассмотрены вопросы регуляции связывания лигандов и диссоциации лиганд-альбуминового комплекса в процессе транспорта лекарств из крови в ткани. В заключение обозначены некоторые перспективные направления дальнейших исследований в области изучения структуры и функций альбумина, а также их практического использования.

Полный текст

Доступ закрыт

Об авторах

Надежда Николаевна ПШЕНКИНА

УРАМН «Научно-исследовательский институт экспериментальной медицины СЗО РАМН», Санкт-Петербург

Email: pshenkina@mail.ru
Санкт-Петербург, 197376, ул. Академика Павлова, 12

Список литературы

  1. Бендер К.И., Луцевич А.Н. Взаимодействие пипольфена и супрастина с сывороточным альбумином человека в зависимости от pH среды и содержания в ней ионов кальция // Фармакол. токсикол. 1983. №6. С. 59-63.
  2. Бендер К.И., Луцевич А.Н., Купчиков В.В. Роль конформационных изменений сывороточного альбумина и взаимодействие с ним лекарственных веществ // Фармакол. токсикол. 1989. Т. 52. № 5. С. 85-95.
  3. Грызунов Ю.А., Гринберг A.A., Ступин В.А. и соавт. Информативность показателя «эффективная концентрация альбумина» при распространенном перитоните: данные многоцентрового исследования // Анестезиол. реаниматол. 2003. № 6. С. 32-35.
  4. Миллер Ю.А. Связывание ксенобиотиков альбумином сыворотки крови // Клин. лаб. диагн. 1993. № 1. С. 34-40.
  5. Нямаа Д., Бат-Эрдэнэ О., Бурштейн Э.А. Влияние среды на функциональные и структурные свойства сывороточных альбуминов. 1: Влияние ионной силы на сывороточный альбумин человека в N-форме // Мол. биол. 1984. № 3. С. 839-847.
  6. Нямаа Д., Бат-Эрдэнэ О., Бурштейн Э.А. Влияние среды на функциональные и структурные свойства сывороточных альбуминов. II: Влияние температуры на N-форму сывороточного альбумина человека // Мол. биол. 1984. № 4. С. 972-978.
  7. Нямаа Д., Бат-Эрдэнэ О., Бурштейн Э.А. Влияние среды на функциональные н структурные свойства сывороточных альбуминов: III: Зависимость N-FI-, F1-F2- и F2-Е-переходов сывороточного альбумина человека от температуры и ионной силы // Мол. биол. 1985. № 3. С. 833-840.
  8. Нямаа Д., Бат-Эрдэнэ О., Бурштейн Э.А. Влияние среды на функциональные и структурные свойства сывороточных альбуминов: IV: Состояние сывороточного альбумина человека в зоне pH от 5 до 10 // Мол. биол. 1985.Vo 6. С. 1679-1684.
  9. Смолина Н.В., Грызунов Ю.А., Максимова Н.М. и соавт. Свойства связывающих центров молекулы альбумина у больных тревожной депрессией: исследование методом тушения флюоресценции /V Бюл. экспер. биол. мед. 2007. Т. 144. № 11. С. 514- 516.
  10. Справочник лекарств РЛС. Энциклопедия лекарств и товаров аптечного ассортимента, http://www.rl-snet.ru/tn_alf.htm
  11. Чёгёр C.И. Транспортная функция сывороточного альбумина. Бухарест: Изд-во Академии Соц. Республики Румынии. 1975. 183 с.
  12. Ascenzi Р., Bocedi A., Notari S. et al. Heme impairs alIosterically drug binding to human serum albumin Sudlow’s site I // Biochem. Biophys. Res. Commun. 2005. Vol. 334. № 2. P. 481-486.
  13. Ascenzi P., Bocedi A., Notari S. et al. Allosteric modulation of drug binding to human serum albumin // Mini-Rev. Med. Chem. 2006. Vol. 6. P. 483-489.
  14. Ascenzi P., di Masi A., De Sanctis G. et al. Ibuprofen modulates allosterically NO dissociation from ferrous nitrosylated human serum heme-albumin by binding to three sites // Biochem. Biophys. Res. Commun. 2009. Vol. 387. № 1. P. 83-86.
  15. Ascenzi P., Fasano M. Serum heme-albumin: an allosteric protein // IUBMB Life. 2009. Vol. 61. № 12. P. 1118-1122.
  16. Baker M. Parton T. Kinetic determinants of hepatic clearance: Plasma protein binding and hepatic uptake // Xenobiotica. 2007. Vol. 37. До 10-11. P. 1110-1134.
  17. Baroni S., Mattu М., Vannini A. et al. Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin. A spectroscopic study // Eur. J. Biochem. 2001. Vol. 268. № 23. P. 6214-6220.
  18. Bertucci C., Domenici E. Reversible and covalent binding of drugs to human scrum albumin: methodological approaches and physiological relevance // Curr. Med. Chem. 2002. Vol. 9. № 15. P. 1463-1481.
  19. Bertucci C., Nanni B., Raffaelli A., Salvadori P. Chemical modification of human albumin at cys34 by ethacrynic acid: structural characterisation and binding properties//J. Pharm. Biomed. Anal. 1998. Vol. 18. № 1-2. P. 127-136.
  20. Bhattacharya A.A., Curry S., Franks N.P. Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures // J. Biol. Chem. 2000. Vol. 275. №49. P. 38731-38738.
  21. Bhattacharya A.A., Griinc T., Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin // J. Mol. Biol. 2000. Vol. 303. № 5. P. 721-732.
  22. Bhattacharya M., Jain N. Bhasnc K. et al. pH-induced conformational isomerization of bovine serum albumin studied by extrinsic and intrinsic protein fluorescence // J. Fluoresc. 2010. DOI 10.1007/ S10895-0I0-0781-3.
  23. Bischer A., Zia-Amirhosseini P., Iwaki M. et al. Stereoselective binding properties of naproxen glucuronide diastercomers to proteins // J. Pharmacokinet. Biopharm. 1995. Vol. 23. № 4. P. 379-395.
  24. Boulton D. W., Walle U. K., Walle T. Extensive binding of the bioflavonoid quercetin to human plasma proteins // J. Pharm. Pharmacol. 1998. Vol. 50. № 2. P.243-249.
  25. Brée F., Urien S., Nguyen P., Tillemcnt J.P. et al. Human serum albumin conformational changes as induced by tenoxicam and modified by simultaneous diazepam binding // J. Pharm. Phannacol. 1993. Vol. 45. № 12. P. 1050-1053.
  26. Broderscn R. Bilirubin. Vol. I. Chemistry / Ed. by Heirwegh K.P.M., Brown S.B. Florida: CRC Press, Boca Raton, 1982. P. 75-123.
  27. Buttar D., Colclough N., Gerhardt S. et al. A combined spectroscopic and crystallographic approach to probing drug-human scrum albumin interactions / Bioorg. Med. Chem. 2010. Vol. 18. № 21. P. 7486-7496.
  28. Carter D.C., Ho J.X. Structure of serum albumin //Adv. Protein Chem. 1994. Vol. 45. P. 153-203.
  29. Chen Y.M., Guo L.H. Combined fluorescence and electrochemical investigation on the binding interaction between organic acid and human serum albumin // J. Environ. Sci. (China). 2009. Vol. 21. № 3. P. 373-379.
  30. Choi J.K. Ho J., Curry S. et al. Interactions of very long-chain saturated fatty acids with scrum albumin // J. Lipid Res. 2002. Vol. 43. P. 1000-1010.
  31. Chuang V.T., Kuniyasu A., Nakayama H. et al. Helix 6 of subdomain III A of human serum albumin is the region primarily photolabeled by ketoprofen, an arylpropionic acid NSA1D containing a benzophenone moiety // Biochim. Biophys. Acta. 1999. Vol. 1434. № 1. P. 18-30.
  32. Chuang V.T., Otagiri M. How do fatty acids cause allosteric binding of drugs to human serum albumin? // Pharm. Res. 2002. Vol. 19. № 10. P. 1458-1464.
  33. Colmenarejro G. In silico prediction of drug-binding strengths to human serum albumin // Med. Res. Rev. 2003. Vol. 23. № 3. P. 275-301.
  34. Curry S. Lessons from the crystallographic analysis of small molecule binding to human serum albumin // Drug Metab. Pharmacokinet. 2009. Vol. 24. №4. P. 342-357.
  35. Curry S., Brick P., Franks N.P. Fatty acid binding to human serum albumin: new insights from crystallographic studies // Biochim. Biophys. Acta. 1999. Vol. 1441. №2-3. P. 131-140.
  36. Deeb O., Rosales-Hemandcz M.C., Gómez-Castro C. et al. Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligand-protein interactions // Biopolimers. 2010. Vol. 93. №2. P. 161-170.
  37. DrugBank database, http://www.drugbank.ca
  38. Fanali G., Pariani G., Ascenzi P., Fasano M. Allosteric and binding properties of Aspl-Glu382 truncated recombinant human serum albumin-an optical and NMR spectroscopic investigation // FEBS J. 2009. Vol. 276. № 8. P. 2241-2250.
  39. Fehske K.J., Müller W.E., Wollert U. The location of drug binding sites in human serum albumin // Biochem. Pharmacol. 1981. Vol. 30. № 7. P. 687-692.
  40. Fehske K.J., Schlafer U., Wollen U., Müller W.E. Characterization of an important drug binding area on human serum albumin including the high-affinity binding sites of warfarin and azapropazone // Mol. Pharmacol. 1982. Vol. 21. №2. P. 387-393.
  41. Fujiwara S., Amisaki T. Molecular dynamics study of conformational changes in human serum albumin by binding of fatty acids // Proteins. 2006. Vol. 64. № 3. P. 730-739.
  42. Ghuman J., Zunszain P.A., Petitpas I. et al. Structural basis of the drug-binding specificity of human serum albumin // J. Mol. Biol. 2005. Vol. 353. № 1. P. 38-52.
  43. Gleeson M.P., Hersey A., Hannongbua S. In-silico ADME models: a general assessment of their utility in drug discovery applications // Curr. Top. Med. Chem. 2011. Vol. 11. №4. P. 358-381.
  44. Gustafsson S.S., Vrang L., Terelius Y., Danielson U.H. Quantification of interactions between drug leads and serum proteins by use of «binding efficiency» // Anal. Biochem. 2011. Vol. 409. № 2. P. 163-175.
  45. Hamilton J. A. Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us // Prog. Lipid. Res. 2004. Vol. 43. № 3. P. 177-199.
  46. Harmsen B.J., De Bruin S.H., Janssen L.H. et al. pK change of imidazole groups in bovine serum albumin due to the conformational change at neutral pH // Biochem. 1971. Vol. 10. № 7. P. 3217-3221.
  47. Hawkins M.J., Soon-Shiong P., Desai N. Protein nanoparticles as drug carriers in clinical medicine // Adv. Drug Deliv. Rev. 2008. Vol. 60. № 8. P. 876-885.
  48. Hein K.L., Kragh-Hanscn U., Morth J.P. et al. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin // J. Struct. Biol. 2010. Vol. 171. №3. P. 353-360.
  49. Horie T., Mizurna T., Kasai S., Awazu S. Conformational changes in plasma albumin due to interaction with isolated rat hepatocytes //Am. J. Physiol. 1988. Vol. 254. № 4 (Pt. 1 ). G465-G470.
  50. Irikura M., Takadate A., Goya S., Otagiri M. 7-Alkyl-aminocoumarin-4-acetic acids as fluorescent probe for studies of drug-binding sites on human serum albumin //Chem. Pharm. Bull. 1991. Vol. 39. № 3. P. 724-728.
  51. Janssen L.H., Van Wilgcnburg M.T., Wilting J. Human serum albumin as an allosteric two-state protein: Evidence from effects of calcium and warfarin on proton binding behaviour // Biochim. Biopihys. Acta. 1981. Vol. 669. № 2. P. 244-250.
  52. Joseph K.S., Moser A.C., Basiaga S.B. et al. Evaluation of alternatives to warfarin as probes for Sudlow site I of human scrum albumin: characterization by high-performance affinity chromatography // J. Chromatogr. A. 2009. Vol. 1216. № 16. P. 3492-3500.
  53. Joshi P., Chakraborty S., Dey S. et al. Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin // J. Colloid Interface Sei. 201 I. Vol. 355. № 2. P. 402-409.
  54. Kamal J.K.A., Zhao L., Zewail A.H. Ultrafast hydration dynamics in protein unfolding: Human serum albumin // Proc. Nat. Acad. Sei. USA. 2004. Vol. 101. №37. P. 13411-13416.
  55. Kandagal P.B., Ashoka S., Seetharamappa J. et al. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach // J. Pharm. Biomed. Anal. 2006. Vol. 41. № 2. P. 393-399.
  56. Kim H.S., Hage D.S. Chromatographic analysis of carbamazepine binding to human serum albumin // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sei. 2005. Vol. 816. № 1-2. P. 57-66.
  57. Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin // Pharmacol. Rev. 1981. Vol. 33. № 1. P. 17-53.
  58. Kragh-Hansen U. Relations between high-affinity binding sites of markers for binding regions on human serum albumin // Biochem. J. 1985. Vol. 225. № 3. P. 629-638.
  59. Kragh-Hansen U. Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin, and other ligands // Mol. Pharmacol. 1988. Vol. 34. № 2. P. 160-171.
  60. Kragh-Hansen U. Octanoate binding to the indole- and benzodiazepine-binding region of human serum albumin // Biochem. J. 1991. Vol. 273. Pt. 3. P. 641-644.
  61. Kragh-Hansen U., Chuang V.T.G., Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin // Biol. Pharm. Bull. 2002. Vol. 25. № 6. P. 695-704.
  62. Kragh-Hansen U., Minchiotti L., Brennan S.O., Sugita O. Hormone binding to natural mutants of human serum albumin /7 Eur. J. Biochem. 1990. Vol. 193. № 1. P. 169-174.
  63. Kratochwil N.A., Huber W., Müller F. et al. Predicting plasma protein binding of drags: A new approach // Biochem. Pharmacol. 2002. Vol. 64. jN® 9. P. 1355- 1374.
  64. Kratz F. Albumin as a drag carrier: design of prodrags, drag conjugates and nanoparticles // J. Control Release. 2008. Vol. 132. № 3. P. 171-183.
  65. Liu X., Chen C., Hop C.E. Do we need to optimize plasma protein and tissue binding in drag discovery? // Curr. Top. Med. Chem. 2011. Vol. 11. № 4. P. 450-466.
  66. Liu X., Smith B.J., Chen C. et al. Use of physiologically based pharmacokinetic model to study the time to reach brain equilibrium: An experimental analysis of the role of blood-brain barrier pcrmibility, plasma protein binding, and brain tissue binding // J. Pharmacol. Exp. Thcr. 2005. Vol. 313. № 3. P. 1254-1262.
  67. Lu J., Stewart A.J., Sadler P.J. et al. Albumin as a zinc carrier: properties of its high-affinity zinc-binding site // Biochem. Soc. Trans. 2008. Vol. 36. Pt. 6. P. 1317-1321.
  68. Mallik R., Yoo M.J., Chen S., Hage D.S. Studies of verapamil binding to human serum albumin by high-performance affinity chromatography // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sei. 2008. Vol. 876. № 1. P. 69-75.
  69. Matsushita Y., Gouda H., Tsujishita H., Hirono S. Determination of binding conformations of drags to human serum albumin by transferred nuclear ovcrhauser effect measurements and conformational analyses using high-temperature molecular dynamics calculations //J. Pharm. Sci. 1998. Vol. 87. №3. P. 379-386.
  70. Meisner H., Neet K. Competitive binding of long-chain free fatty acids, octanoate. and chlorophenoxyisobutyrate to albumin // Mol. Pharmacol. 1978. Vol. 14. № 2. P. 337-346.
  71. Mignot I., Presle N. Lapicque F. et al. Albumin binding sites for etodolac enantiomers // Chirality. 1996. Vol. 8. №3. P. 271-280.
  72. Mitzner S.R., Stange J., Klammt S. et al. Albumin dialysis MARS: knowledge from 10 years of clinical investigation // ASAIO J. 2009. Vol. 55. № 5. P. 498-502.
  73. Montera M.T., Pouplana R., Valls O., Garcia S. On the binding of cinmctacin and indomethacin to human serum albumin // J. Pharm. Pharmacol. 1986. Vol. 38. № 12. P. 925-927.
  74. Mudge G.H., Desbiens N., Stibitz G.R. Binding of iophenoxate and iopanoate to human serum albumin // Drag Metab. Dispos. 1978. Vol. 6. № 4. P. 432-439.
  75. Nerli B., Romanini D., Picó G. Structural specificity requirements in the binding of beta lactam antibiotics to human serum albumin // Chem. Biol. Interact. 1997. Vol. 104.Ns 2-3. P. 179-202.
  76. Neumann E., Frei E., Funk D. et al. Native albumin for targeted drag delivery // Expert Opin. Drag Deliv. 2010. Vol. 7. №8. P. 915-925.
  77. Nicoletti F.P., Howes B.D., Fittipaldi M. et al. Ibuprofen induces an allosteric conformational transition in the heme complex of human serum albumin with significant effects on heme ligation // J. Am. Chem. Soc. 2008. Vol. 130. №35. P. 11677-11688.
  78. Nikolié N., Vranjcs-Ethurić S., Janković D. et al. Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals // Nanotechnology. 2009. Vol. 20. №38. P. 385102.
  79. Noskov B. A., Mikhailovskaya A.A., Lin S. Y. et al. Bovine serum albumin unfolding at the air/water interface as studied by dilational surface rhcology // Langmuir. 2010. Vol. 26. №22. P. 17225-17231.
  80. Novclli G., Rossi M., Pretagostini R. et al. A 3-ycar experience with Molecular Adsorbent Recirculating System (MARS): our results on 63 patients with hepatic failure and color Doppler US evaluation of cerebral perfusion // Liver Int. 2003. Vol. 23 (Suppl. 3). P. 10-15.
  81. Otagiri M., Masuda K., Imai T. et al. Binding of pirprofen to human serum albumin studied by dialysis and spectroscopy techniques// Biochem. Pharmacol. 1989. Vol. 38. № 1. P. 1-7.
  82. Otagiri M., Nakamura H., Maruyama T. et al. Characterization of binding sites for sulfadimethoxine and its major metabolite. N4-acetylsuIfadimethoxine, on human and rabbit serum albumin // Chem. Pharm. Bull. 1989. Vol. 37. №2. P. 498-501.
  83. Panjehshahin M.R., Bowmer C.J., Yates M.S. Effect of valproic acid, its unsaturated metabolites and some structurally related fatty acids on the binding of warfarin and dansylsarcosine to human albumin // Biochem. Pharmacol. 1991. Vol. 41. № 8. P. 1227-1233.
  84. Peters T., Jr. All about Albumin: Biochemistry, Genetics. and Medical Applications. San Diego: Academic Press, 1996. 432 p.
  85. Petersen C.E., На C.E., Harohalli K. et al. A dynamic model for bilirubin binding to human serum albumin // J. Biol. Chem. 2000. Vol. 275. № 28. P. 20985-20995.
  86. Petersen C.E., На C.E., Jameson D.M., Bhagavan N.V. Mutations in a specific human serum albumin thyroxine binding site define the structural basis of familial dysalbuminemic hyperthyroxinemia // J. Biol. Chem. 1996. Vol. 271. №32. P. 19110-19117.
  87. Petitpas I., Bhattacharya A.A., Twine S. et al. Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I // J. Biol. Chem. 2001. Vol. 276. № 25. P. 22804-22809.
  88. Petitpas I., Grüne T., Bhattacharya A.A., Curry S. Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty- acids // J. Mol. Biol. 2001. Vol. 314. № 5. P. 955-960.
  89. Petitpas I., Petersen C.E., Ha C.E. et al. Structural basis of albumin-thyroxine interactions and familial dysal buminemic hyperthyroxinemia // Proc. Natl. Acad. Sei. USA. 2003. Vol. 100. № 11. P. 6440-6445.
  90. in Data Bank. A Resource for Studying Biological Macromolecules. http://vwv.rcsb.org/pdb/homc/ honte.do
  91. Rahman M.H., Maruyama T., Okada T. et al. Study of interaction of carprofen and its enantiomers with human serum albumin. -1. Mechanism of binding studied by dialysis and spectroscopic methods // Biochem. Pharmacol. 1993. Vol. 46. № 10. P. 1721-1731.
  92. Rahman M.H., Maruyama T., Okada T. et al. Study of interaction of carprofen and its enantiomers with human serum albumin. - II. Stereoselective site-to-site displacement of carprofen by ibuprofen // Biochem. Pharmacol. 1993. Vol. 46. № 10. P. 1733-1740.
  93. Rahman M.H., Yamasaki K., Shin Y.H. et al. Characterization of high affinity binding sites of non-steroidal anti-inflammatory drugs with respect to site-specific probes on human serum albumin // Biol. Pharm. Bull. 1993. Vol. 16. № 11. P. 1169-1174.
  94. Ryan A.J., Ghuman J., Zunszain P.A. et al. Structural basis of binding of fluorescent, site-specific dansyl-ated amino acids to human serum albumin // J. Struct. Biol. 2011. Vol. 174. № 1. P. 84-91.
  95. Sakai T., Takadate A., Otagiri M. Characterization of binding site of uremic toxins on human serum albumin // Biol. Pharm. Bull. 1995. Vol. 18. № 12. P. 1755-1761.
  96. Simard J.R., Zunszain P.A., Hamilton J.A., Curry S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis // J. Mol. Biol. 2006. Vol. 361. №2. P. 336-351.
  97. Stepensky D. Use of unbound volumes of drug distribution in pharmacokinetic calculations // Eur. J. Pharm. Sei. 2011. Vol. 42. № 1-2. P. 91-98.
  98. Sudlow G., Birkett D.J., Wade D.N. Spectroscopic techniques in the study of protein binding: A fluorescence technique for the evaluation of the albumin binding and displacement of warfarin and warfarin-alcohol // Clin. Exp. Pharmacol. Physiol. 1975. Vol. 2. №2. P. 129-140.
  99. Sugio S., Kashima A., Mochizuki S. et al. Crystal structure of human serum albumin at 2.5 A resolution // Protein Eng. 1999. Vol. 12. № 6. P. 439-446.
  100. Takamura N., Haruta A., Kodama H. et al. Mode of interaction of loop diuretics with human serum albumin and characterization of binding site // Pharm. Res. 1996. Vol. 13. № 7. P. 1015-1019.
  101. Takamura N., Maruyama T., Ahmed S. et al. Interactions of aldosterone antagonist diuretics with human serum proteins // Pharm. Res. 1997. Vol. 14. № 4. P. 522-526.
  102. Takamura N., Rahman M.H., Yamasaki K. et al. Interaction of bcnzothiadiazidcs with human serum albumin studied by dialysis and spectroscopic methods // Pharm. Res. 1994. Vol. 11. № 10. P. 1452-1457.
  103. Takamura N., Shinozawa S., Maruyama T. et al. Effects of fatty acids on scrum binding between furosemide and valproic acid // Biol. Phann. Bull. 1998. Vol. 21. №2. P. 174-176.
  104. Tanaka H., Mizojiri K. Drug-protein binding and blood-brain barrier permeability // J. Pharmacol. Exp. Ther. 1999. Vol. 288. № 3. P. 912-918.
  105. Tsutsumi Y., Maruyama T., Takadate A. et al. Interaction between two dicarboxylate endogenous substances, bilirubin and an uremic toxin, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, on human serum albumin ii Pharm Res. 1999. Vol. 16. № 6. P. 916-923.
  106. Twine S.M., Lee A.G. Gore M.G. et al. Characterisation of domain fragments of recombinant human albumin // Biochem. Soc. Trans. 1998. Vol. 26. № 3. S. 279.
  107. Valkó K.L., Nunhuck S.B., Hill A.P. Estimating unbound volume of distribution and tissue binding by in vitro HPLC-based human serum albumin and immobilised artificial membrane-binding measurements // J. Pharm. Sei. 2011. Vol. 100. № 3. P. 849-862.
  108. Vallner J.J. Binding of drugs by albumin and plasma protein // J. Phann. Sci. 1977. Vol. 66. № 4. P. 447-465.
  109. Van der Vussc G.J. Albumin as fatty acid transporter // Drug Mctab. Pharmacokinet. 2009. Vol. 24. № 4. P. 300-307.
  110. Varshney A., Rehan M., Subbarao N. et al. Elimination of endogenous toxin, creatinine from blood plasma depends on albumin conformation: site specific uremic toxicity & impaired drug binding// PLoS One. 2011. Vol. 6. №2. el7230.
  111. Varshney A., Sen P., Ahmad E. et al. Ligand binding strategies of human scrum albumin: how can the cargo be utilized? // Chirality. 2010. Vol. 22. № 1. P. 77- 87.
  112. Watanabe H., Kragh-Hansen U., Tanase S. et al. Conformational stability and warfarin-binding properties of human serum albumin studied by recombinant mutants h Biochem. J. 2001. Vol. 357.№1. P. 269-274.
  113. Watanabe H., Tanase S., Nakajou K. et al. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity // Biochem. J. 2000. Vol. 349. №3. P. 813-819.
  114. Yamasaki K., Maruyama T., Kragh-Hansen U., Otagiri M. Characterization of site I on human serum albumin: concept about the structure of a drug binding site // Biochim. Biophys. Acta. 1996. Vol. 1295. ,№ 2. P. 147-157.
  115. Yamasaki K., Maruyama T., Takadate A. et al. Characterization of site I of human serum albumin using spectroscopic analyses: locational relations between regions lb and Ic of site 1 // J. Pharm. Sei. 2004. Vol. 93. № 12. P. 3004-3012.
  116. Yamasaki K., Rahman M.H., Tsutsumi Y. et al. Circular dichroism simulation shows a site-II-to-site-1 displacement of human serum albumin-bound diclofenac by ibuprofcn //AAPS PharmSciTcch. 2000. Vol. 14. № I. El2 (http://www.pharmscitcch.com).
  117. Yoo M.J., Smith Q.R., Hage D.S. Studies of imipramine binding to human serum albumin by high-performance affinity chromatography // J. Chromatogr. B. Analyt. Tcchnol. Biomed. Life Sei. 2009. Vol. 877. № п-12. P. 1149-1154.
  118. Zatón A., Martinez A., de Gandarias J. M. The binding of thioureylenc compounds to human serum al. bumin // Biochem. Pharmacol. 1988. Vol. 37. № 16. P. 3127-3131.
  119. Zhao X., Liu R„ Chi Z. et al. New insights into the behavior of bovine scrum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies // J. Phys. C'hem. B. 2010. Vol. 114. № 16. P. 5625-5631.
  120. Zhu L., Yang F., Chen L. et al. A new drug binding subsitc on human scrum albumin and drug-drug interaction studied by X-ray crystallography // J. Struct. Biol. 2008. Vol. 162. № 1. P. 40-49.
  121. Zurawski V.R. Jr., Foster J.F. The neutral transition and the environment of the sulfhydryl side chain of bovine plasma albumin // Biochcm. 1974. Vol. 13. № 17. P. 465-471.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ПШЕНКИНА Н.Н., 2011

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах