Structure of albumin and transport of drugs

Abstract


Modern advances in research of structure and function of human serum albumin relating to drug carrying are reviewed. The main drugs' binding sites are characterized. Regulation of drug binding and dissociation of ligand-protein complexes during drugs'transfer to tissues are considered. In conclusion, prospective areas of further investigations of albumin structure and functions are proposed and possible ways of practical application are considered as well.

N N Pshenkina

Research Institute for Experimental Medicine of the Northwest Branch of the RAMS, St. Petersburg

Email: pshenkina@mail.ru

  1. Бендер К.И., Луцевич А.Н. Взаимодействие пипольфена и супрастина с сывороточным альбумином человека в зависимости от pH среды и содержания в ней ионов кальция // Фармакол. токсикол. 1983. №6. С. 59-63.
  2. Бендер К.И., Луцевич А.Н., Купчиков В.В. Роль конформационных изменений сывороточного альбумина и взаимодействие с ним лекарственных веществ // Фармакол. токсикол. 1989. Т. 52. № 5. С. 85-95.
  3. Грызунов Ю.А., Гринберг A.A., Ступин В.А. и соавт. Информативность показателя «эффективная концентрация альбумина» при распространенном перитоните: данные многоцентрового исследования // Анестезиол. реаниматол. 2003. № 6. С. 32-35.
  4. Миллер Ю.А. Связывание ксенобиотиков альбумином сыворотки крови // Клин. лаб. диагн. 1993. № 1. С. 34-40.
  5. Нямаа Д., Бат-Эрдэнэ О., Бурштейн Э.А. Влияние среды на функциональные и структурные свойства сывороточных альбуминов. 1: Влияние ионной силы на сывороточный альбумин человека в N-форме // Мол. биол. 1984. № 3. С. 839-847.
  6. Нямаа Д., Бат-Эрдэнэ О., Бурштейн Э.А. Влияние среды на функциональные и структурные свойства сывороточных альбуминов. II: Влияние температуры на N-форму сывороточного альбумина человека // Мол. биол. 1984. № 4. С. 972-978.
  7. Нямаа Д., Бат-Эрдэнэ О., Бурштейн Э.А. Влияние среды на функциональные н структурные свойства сывороточных альбуминов: III: Зависимость N-FI-, F1-F2- и F2-Е-переходов сывороточного альбумина человека от температуры и ионной силы // Мол. биол. 1985. № 3. С. 833-840.
  8. Нямаа Д., Бат-Эрдэнэ О., Бурштейн Э.А. Влияние среды на функциональные и структурные свойства сывороточных альбуминов: IV: Состояние сывороточного альбумина человека в зоне pH от 5 до 10 // Мол. биол. 1985.Vo 6. С. 1679-1684.
  9. Смолина Н.В., Грызунов Ю.А., Максимова Н.М. и соавт. Свойства связывающих центров молекулы альбумина у больных тревожной депрессией: исследование методом тушения флюоресценции /V Бюл. экспер. биол. мед. 2007. Т. 144. № 11. С. 514- 516.
  10. Справочник лекарств РЛС. Энциклопедия лекарств и товаров аптечного ассортимента, http://www.rl-snet.ru/tn_alf.htm
  11. Чёгёр C.И. Транспортная функция сывороточного альбумина. Бухарест: Изд-во Академии Соц. Республики Румынии. 1975. 183 с.
  12. Ascenzi Р., Bocedi A., Notari S. et al. Heme impairs alIosterically drug binding to human serum albumin Sudlow’s site I // Biochem. Biophys. Res. Commun. 2005. Vol. 334. № 2. P. 481-486.
  13. Ascenzi P., Bocedi A., Notari S. et al. Allosteric modulation of drug binding to human serum albumin // Mini-Rev. Med. Chem. 2006. Vol. 6. P. 483-489.
  14. Ascenzi P., di Masi A., De Sanctis G. et al. Ibuprofen modulates allosterically NO dissociation from ferrous nitrosylated human serum heme-albumin by binding to three sites // Biochem. Biophys. Res. Commun. 2009. Vol. 387. № 1. P. 83-86.
  15. Ascenzi P., Fasano M. Serum heme-albumin: an allosteric protein // IUBMB Life. 2009. Vol. 61. № 12. P. 1118-1122.
  16. Baker M. Parton T. Kinetic determinants of hepatic clearance: Plasma protein binding and hepatic uptake // Xenobiotica. 2007. Vol. 37. До 10-11. P. 1110-1134.
  17. Baroni S., Mattu М., Vannini A. et al. Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin. A spectroscopic study // Eur. J. Biochem. 2001. Vol. 268. № 23. P. 6214-6220.
  18. Bertucci C., Domenici E. Reversible and covalent binding of drugs to human scrum albumin: methodological approaches and physiological relevance // Curr. Med. Chem. 2002. Vol. 9. № 15. P. 1463-1481.
  19. Bertucci C., Nanni B., Raffaelli A., Salvadori P. Chemical modification of human albumin at cys34 by ethacrynic acid: structural characterisation and binding properties//J. Pharm. Biomed. Anal. 1998. Vol. 18. № 1-2. P. 127-136.
  20. Bhattacharya A.A., Curry S., Franks N.P. Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures // J. Biol. Chem. 2000. Vol. 275. №49. P. 38731-38738.
  21. Bhattacharya A.A., Griinc T., Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin // J. Mol. Biol. 2000. Vol. 303. № 5. P. 721-732.
  22. Bhattacharya M., Jain N. Bhasnc K. et al. pH-induced conformational isomerization of bovine serum albumin studied by extrinsic and intrinsic protein fluorescence // J. Fluoresc. 2010. DOI 10.1007/ S10895-0I0-0781-3.
  23. Bischer A., Zia-Amirhosseini P., Iwaki M. et al. Stereoselective binding properties of naproxen glucuronide diastercomers to proteins // J. Pharmacokinet. Biopharm. 1995. Vol. 23. № 4. P. 379-395.
  24. Boulton D. W., Walle U. K., Walle T. Extensive binding of the bioflavonoid quercetin to human plasma proteins // J. Pharm. Pharmacol. 1998. Vol. 50. № 2. P.243-249.
  25. Brée F., Urien S., Nguyen P., Tillemcnt J.P. et al. Human serum albumin conformational changes as induced by tenoxicam and modified by simultaneous diazepam binding // J. Pharm. Phannacol. 1993. Vol. 45. № 12. P. 1050-1053.
  26. Broderscn R. Bilirubin. Vol. I. Chemistry / Ed. by Heirwegh K.P.M., Brown S.B. Florida: CRC Press, Boca Raton, 1982. P. 75-123.
  27. Buttar D., Colclough N., Gerhardt S. et al. A combined spectroscopic and crystallographic approach to probing drug-human scrum albumin interactions / Bioorg. Med. Chem. 2010. Vol. 18. № 21. P. 7486-7496.
  28. Carter D.C., Ho J.X. Structure of serum albumin //Adv. Protein Chem. 1994. Vol. 45. P. 153-203.
  29. Chen Y.M., Guo L.H. Combined fluorescence and electrochemical investigation on the binding interaction between organic acid and human serum albumin // J. Environ. Sci. (China). 2009. Vol. 21. № 3. P. 373-379.
  30. Choi J.K. Ho J., Curry S. et al. Interactions of very long-chain saturated fatty acids with scrum albumin // J. Lipid Res. 2002. Vol. 43. P. 1000-1010.
  31. Chuang V.T., Kuniyasu A., Nakayama H. et al. Helix 6 of subdomain III A of human serum albumin is the region primarily photolabeled by ketoprofen, an arylpropionic acid NSA1D containing a benzophenone moiety // Biochim. Biophys. Acta. 1999. Vol. 1434. № 1. P. 18-30.
  32. Chuang V.T., Otagiri M. How do fatty acids cause allosteric binding of drugs to human serum albumin? // Pharm. Res. 2002. Vol. 19. № 10. P. 1458-1464.
  33. Colmenarejro G. In silico prediction of drug-binding strengths to human serum albumin // Med. Res. Rev. 2003. Vol. 23. № 3. P. 275-301.
  34. Curry S. Lessons from the crystallographic analysis of small molecule binding to human serum albumin // Drug Metab. Pharmacokinet. 2009. Vol. 24. №4. P. 342-357.
  35. Curry S., Brick P., Franks N.P. Fatty acid binding to human serum albumin: new insights from crystallographic studies // Biochim. Biophys. Acta. 1999. Vol. 1441. №2-3. P. 131-140.
  36. Deeb O., Rosales-Hemandcz M.C., Gómez-Castro C. et al. Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligand-protein interactions // Biopolimers. 2010. Vol. 93. №2. P. 161-170.
  37. DrugBank database, http://www.drugbank.ca
  38. Fanali G., Pariani G., Ascenzi P., Fasano M. Allosteric and binding properties of Aspl-Glu382 truncated recombinant human serum albumin-an optical and NMR spectroscopic investigation // FEBS J. 2009. Vol. 276. № 8. P. 2241-2250.
  39. Fehske K.J., Müller W.E., Wollert U. The location of drug binding sites in human serum albumin // Biochem. Pharmacol. 1981. Vol. 30. № 7. P. 687-692.
  40. Fehske K.J., Schlafer U., Wollen U., Müller W.E. Characterization of an important drug binding area on human serum albumin including the high-affinity binding sites of warfarin and azapropazone // Mol. Pharmacol. 1982. Vol. 21. №2. P. 387-393.
  41. Fujiwara S., Amisaki T. Molecular dynamics study of conformational changes in human serum albumin by binding of fatty acids // Proteins. 2006. Vol. 64. № 3. P. 730-739.
  42. Ghuman J., Zunszain P.A., Petitpas I. et al. Structural basis of the drug-binding specificity of human serum albumin // J. Mol. Biol. 2005. Vol. 353. № 1. P. 38-52.
  43. Gleeson M.P., Hersey A., Hannongbua S. In-silico ADME models: a general assessment of their utility in drug discovery applications // Curr. Top. Med. Chem. 2011. Vol. 11. №4. P. 358-381.
  44. Gustafsson S.S., Vrang L., Terelius Y., Danielson U.H. Quantification of interactions between drug leads and serum proteins by use of «binding efficiency» // Anal. Biochem. 2011. Vol. 409. № 2. P. 163-175.
  45. Hamilton J. A. Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us // Prog. Lipid. Res. 2004. Vol. 43. № 3. P. 177-199.
  46. Harmsen B.J., De Bruin S.H., Janssen L.H. et al. pK change of imidazole groups in bovine serum albumin due to the conformational change at neutral pH // Biochem. 1971. Vol. 10. № 7. P. 3217-3221.
  47. Hawkins M.J., Soon-Shiong P., Desai N. Protein nanoparticles as drug carriers in clinical medicine // Adv. Drug Deliv. Rev. 2008. Vol. 60. № 8. P. 876-885.
  48. Hein K.L., Kragh-Hanscn U., Morth J.P. et al. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin // J. Struct. Biol. 2010. Vol. 171. №3. P. 353-360.
  49. Horie T., Mizurna T., Kasai S., Awazu S. Conformational changes in plasma albumin due to interaction with isolated rat hepatocytes //Am. J. Physiol. 1988. Vol. 254. № 4 (Pt. 1 ). G465-G470.
  50. Irikura M., Takadate A., Goya S., Otagiri M. 7-Alkyl-aminocoumarin-4-acetic acids as fluorescent probe for studies of drug-binding sites on human serum albumin //Chem. Pharm. Bull. 1991. Vol. 39. № 3. P. 724-728.
  51. Janssen L.H., Van Wilgcnburg M.T., Wilting J. Human serum albumin as an allosteric two-state protein: Evidence from effects of calcium and warfarin on proton binding behaviour // Biochim. Biopihys. Acta. 1981. Vol. 669. № 2. P. 244-250.
  52. Joseph K.S., Moser A.C., Basiaga S.B. et al. Evaluation of alternatives to warfarin as probes for Sudlow site I of human scrum albumin: characterization by high-performance affinity chromatography // J. Chromatogr. A. 2009. Vol. 1216. № 16. P. 3492-3500.
  53. Joshi P., Chakraborty S., Dey S. et al. Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin // J. Colloid Interface Sei. 201 I. Vol. 355. № 2. P. 402-409.
  54. Kamal J.K.A., Zhao L., Zewail A.H. Ultrafast hydration dynamics in protein unfolding: Human serum albumin // Proc. Nat. Acad. Sei. USA. 2004. Vol. 101. №37. P. 13411-13416.
  55. Kandagal P.B., Ashoka S., Seetharamappa J. et al. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach // J. Pharm. Biomed. Anal. 2006. Vol. 41. № 2. P. 393-399.
  56. Kim H.S., Hage D.S. Chromatographic analysis of carbamazepine binding to human serum albumin // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sei. 2005. Vol. 816. № 1-2. P. 57-66.
  57. Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin // Pharmacol. Rev. 1981. Vol. 33. № 1. P. 17-53.
  58. Kragh-Hansen U. Relations between high-affinity binding sites of markers for binding regions on human serum albumin // Biochem. J. 1985. Vol. 225. № 3. P. 629-638.
  59. Kragh-Hansen U. Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin, and other ligands // Mol. Pharmacol. 1988. Vol. 34. № 2. P. 160-171.
  60. Kragh-Hansen U. Octanoate binding to the indole- and benzodiazepine-binding region of human serum albumin // Biochem. J. 1991. Vol. 273. Pt. 3. P. 641-644.
  61. Kragh-Hansen U., Chuang V.T.G., Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin // Biol. Pharm. Bull. 2002. Vol. 25. № 6. P. 695-704.
  62. Kragh-Hansen U., Minchiotti L., Brennan S.O., Sugita O. Hormone binding to natural mutants of human serum albumin /7 Eur. J. Biochem. 1990. Vol. 193. № 1. P. 169-174.
  63. Kratochwil N.A., Huber W., Müller F. et al. Predicting plasma protein binding of drags: A new approach // Biochem. Pharmacol. 2002. Vol. 64. jN® 9. P. 1355- 1374.
  64. Kratz F. Albumin as a drag carrier: design of prodrags, drag conjugates and nanoparticles // J. Control Release. 2008. Vol. 132. № 3. P. 171-183.
  65. Liu X., Chen C., Hop C.E. Do we need to optimize plasma protein and tissue binding in drag discovery? // Curr. Top. Med. Chem. 2011. Vol. 11. № 4. P. 450-466.
  66. Liu X., Smith B.J., Chen C. et al. Use of physiologically based pharmacokinetic model to study the time to reach brain equilibrium: An experimental analysis of the role of blood-brain barrier pcrmibility, plasma protein binding, and brain tissue binding // J. Pharmacol. Exp. Thcr. 2005. Vol. 313. № 3. P. 1254-1262.
  67. Lu J., Stewart A.J., Sadler P.J. et al. Albumin as a zinc carrier: properties of its high-affinity zinc-binding site // Biochem. Soc. Trans. 2008. Vol. 36. Pt. 6. P. 1317-1321.
  68. Mallik R., Yoo M.J., Chen S., Hage D.S. Studies of verapamil binding to human serum albumin by high-performance affinity chromatography // J. Chromatogr. B. Analyt. Technol. Biomed. Life Sei. 2008. Vol. 876. № 1. P. 69-75.
  69. Matsushita Y., Gouda H., Tsujishita H., Hirono S. Determination of binding conformations of drags to human serum albumin by transferred nuclear ovcrhauser effect measurements and conformational analyses using high-temperature molecular dynamics calculations //J. Pharm. Sci. 1998. Vol. 87. №3. P. 379-386.
  70. Meisner H., Neet K. Competitive binding of long-chain free fatty acids, octanoate. and chlorophenoxyisobutyrate to albumin // Mol. Pharmacol. 1978. Vol. 14. № 2. P. 337-346.
  71. Mignot I., Presle N. Lapicque F. et al. Albumin binding sites for etodolac enantiomers // Chirality. 1996. Vol. 8. №3. P. 271-280.
  72. Mitzner S.R., Stange J., Klammt S. et al. Albumin dialysis MARS: knowledge from 10 years of clinical investigation // ASAIO J. 2009. Vol. 55. № 5. P. 498-502.
  73. Montera M.T., Pouplana R., Valls O., Garcia S. On the binding of cinmctacin and indomethacin to human serum albumin // J. Pharm. Pharmacol. 1986. Vol. 38. № 12. P. 925-927.
  74. Mudge G.H., Desbiens N., Stibitz G.R. Binding of iophenoxate and iopanoate to human serum albumin // Drag Metab. Dispos. 1978. Vol. 6. № 4. P. 432-439.
  75. Nerli B., Romanini D., Picó G. Structural specificity requirements in the binding of beta lactam antibiotics to human serum albumin // Chem. Biol. Interact. 1997. Vol. 104.Ns 2-3. P. 179-202.
  76. Neumann E., Frei E., Funk D. et al. Native albumin for targeted drag delivery // Expert Opin. Drag Deliv. 2010. Vol. 7. №8. P. 915-925.
  77. Nicoletti F.P., Howes B.D., Fittipaldi M. et al. Ibuprofen induces an allosteric conformational transition in the heme complex of human serum albumin with significant effects on heme ligation // J. Am. Chem. Soc. 2008. Vol. 130. №35. P. 11677-11688.
  78. Nikolié N., Vranjcs-Ethurić S., Janković D. et al. Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals // Nanotechnology. 2009. Vol. 20. №38. P. 385102.
  79. Noskov B. A., Mikhailovskaya A.A., Lin S. Y. et al. Bovine serum albumin unfolding at the air/water interface as studied by dilational surface rhcology // Langmuir. 2010. Vol. 26. №22. P. 17225-17231.
  80. Novclli G., Rossi M., Pretagostini R. et al. A 3-ycar experience with Molecular Adsorbent Recirculating System (MARS): our results on 63 patients with hepatic failure and color Doppler US evaluation of cerebral perfusion // Liver Int. 2003. Vol. 23 (Suppl. 3). P. 10-15.
  81. Otagiri M., Masuda K., Imai T. et al. Binding of pirprofen to human serum albumin studied by dialysis and spectroscopy techniques// Biochem. Pharmacol. 1989. Vol. 38. № 1. P. 1-7.
  82. Otagiri M., Nakamura H., Maruyama T. et al. Characterization of binding sites for sulfadimethoxine and its major metabolite. N4-acetylsuIfadimethoxine, on human and rabbit serum albumin // Chem. Pharm. Bull. 1989. Vol. 37. №2. P. 498-501.
  83. Panjehshahin M.R., Bowmer C.J., Yates M.S. Effect of valproic acid, its unsaturated metabolites and some structurally related fatty acids on the binding of warfarin and dansylsarcosine to human albumin // Biochem. Pharmacol. 1991. Vol. 41. № 8. P. 1227-1233.
  84. Peters T., Jr. All about Albumin: Biochemistry, Genetics. and Medical Applications. San Diego: Academic Press, 1996. 432 p.
  85. Petersen C.E., На C.E., Harohalli K. et al. A dynamic model for bilirubin binding to human serum albumin // J. Biol. Chem. 2000. Vol. 275. № 28. P. 20985-20995.
  86. Petersen C.E., На C.E., Jameson D.M., Bhagavan N.V. Mutations in a specific human serum albumin thyroxine binding site define the structural basis of familial dysalbuminemic hyperthyroxinemia // J. Biol. Chem. 1996. Vol. 271. №32. P. 19110-19117.
  87. Petitpas I., Bhattacharya A.A., Twine S. et al. Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I // J. Biol. Chem. 2001. Vol. 276. № 25. P. 22804-22809.
  88. Petitpas I., Grüne T., Bhattacharya A.A., Curry S. Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty- acids // J. Mol. Biol. 2001. Vol. 314. № 5. P. 955-960.
  89. Petitpas I., Petersen C.E., Ha C.E. et al. Structural basis of albumin-thyroxine interactions and familial dysal buminemic hyperthyroxinemia // Proc. Natl. Acad. Sei. USA. 2003. Vol. 100. № 11. P. 6440-6445.
  90. in Data Bank. A Resource for Studying Biological Macromolecules. http://vwv.rcsb.org/pdb/homc/ honte.do
  91. Rahman M.H., Maruyama T., Okada T. et al. Study of interaction of carprofen and its enantiomers with human serum albumin. -1. Mechanism of binding studied by dialysis and spectroscopic methods // Biochem. Pharmacol. 1993. Vol. 46. № 10. P. 1721-1731.
  92. Rahman M.H., Maruyama T., Okada T. et al. Study of interaction of carprofen and its enantiomers with human serum albumin. - II. Stereoselective site-to-site displacement of carprofen by ibuprofen // Biochem. Pharmacol. 1993. Vol. 46. № 10. P. 1733-1740.
  93. Rahman M.H., Yamasaki K., Shin Y.H. et al. Characterization of high affinity binding sites of non-steroidal anti-inflammatory drugs with respect to site-specific probes on human serum albumin // Biol. Pharm. Bull. 1993. Vol. 16. № 11. P. 1169-1174.
  94. Ryan A.J., Ghuman J., Zunszain P.A. et al. Structural basis of binding of fluorescent, site-specific dansyl-ated amino acids to human serum albumin // J. Struct. Biol. 2011. Vol. 174. № 1. P. 84-91.
  95. Sakai T., Takadate A., Otagiri M. Characterization of binding site of uremic toxins on human serum albumin // Biol. Pharm. Bull. 1995. Vol. 18. № 12. P. 1755-1761.
  96. Simard J.R., Zunszain P.A., Hamilton J.A., Curry S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis // J. Mol. Biol. 2006. Vol. 361. №2. P. 336-351.
  97. Stepensky D. Use of unbound volumes of drug distribution in pharmacokinetic calculations // Eur. J. Pharm. Sei. 2011. Vol. 42. № 1-2. P. 91-98.
  98. Sudlow G., Birkett D.J., Wade D.N. Spectroscopic techniques in the study of protein binding: A fluorescence technique for the evaluation of the albumin binding and displacement of warfarin and warfarin-alcohol // Clin. Exp. Pharmacol. Physiol. 1975. Vol. 2. №2. P. 129-140.
  99. Sugio S., Kashima A., Mochizuki S. et al. Crystal structure of human serum albumin at 2.5 A resolution // Protein Eng. 1999. Vol. 12. № 6. P. 439-446.
  100. Takamura N., Haruta A., Kodama H. et al. Mode of interaction of loop diuretics with human serum albumin and characterization of binding site // Pharm. Res. 1996. Vol. 13. № 7. P. 1015-1019.
  101. Takamura N., Maruyama T., Ahmed S. et al. Interactions of aldosterone antagonist diuretics with human serum proteins // Pharm. Res. 1997. Vol. 14. № 4. P. 522-526.
  102. Takamura N., Rahman M.H., Yamasaki K. et al. Interaction of bcnzothiadiazidcs with human serum albumin studied by dialysis and spectroscopic methods // Pharm. Res. 1994. Vol. 11. № 10. P. 1452-1457.
  103. Takamura N., Shinozawa S., Maruyama T. et al. Effects of fatty acids on scrum binding between furosemide and valproic acid // Biol. Phann. Bull. 1998. Vol. 21. №2. P. 174-176.
  104. Tanaka H., Mizojiri K. Drug-protein binding and blood-brain barrier permeability // J. Pharmacol. Exp. Ther. 1999. Vol. 288. № 3. P. 912-918.
  105. Tsutsumi Y., Maruyama T., Takadate A. et al. Interaction between two dicarboxylate endogenous substances, bilirubin and an uremic toxin, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, on human serum albumin ii Pharm Res. 1999. Vol. 16. № 6. P. 916-923.
  106. Twine S.M., Lee A.G. Gore M.G. et al. Characterisation of domain fragments of recombinant human albumin // Biochem. Soc. Trans. 1998. Vol. 26. № 3. S. 279.
  107. Valkó K.L., Nunhuck S.B., Hill A.P. Estimating unbound volume of distribution and tissue binding by in vitro HPLC-based human serum albumin and immobilised artificial membrane-binding measurements // J. Pharm. Sei. 2011. Vol. 100. № 3. P. 849-862.
  108. Vallner J.J. Binding of drugs by albumin and plasma protein // J. Phann. Sci. 1977. Vol. 66. № 4. P. 447-465.
  109. Van der Vussc G.J. Albumin as fatty acid transporter // Drug Mctab. Pharmacokinet. 2009. Vol. 24. № 4. P. 300-307.
  110. Varshney A., Rehan M., Subbarao N. et al. Elimination of endogenous toxin, creatinine from blood plasma depends on albumin conformation: site specific uremic toxicity & impaired drug binding// PLoS One. 2011. Vol. 6. №2. el7230.
  111. Varshney A., Sen P., Ahmad E. et al. Ligand binding strategies of human scrum albumin: how can the cargo be utilized? // Chirality. 2010. Vol. 22. № 1. P. 77- 87.
  112. Watanabe H., Kragh-Hansen U., Tanase S. et al. Conformational stability and warfarin-binding properties of human serum albumin studied by recombinant mutants h Biochem. J. 2001. Vol. 357.№1. P. 269-274.
  113. Watanabe H., Tanase S., Nakajou K. et al. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity // Biochem. J. 2000. Vol. 349. №3. P. 813-819.
  114. Yamasaki K., Maruyama T., Kragh-Hansen U., Otagiri M. Characterization of site I on human serum albumin: concept about the structure of a drug binding site // Biochim. Biophys. Acta. 1996. Vol. 1295. ,№ 2. P. 147-157.
  115. Yamasaki K., Maruyama T., Takadate A. et al. Characterization of site I of human serum albumin using spectroscopic analyses: locational relations between regions lb and Ic of site 1 // J. Pharm. Sei. 2004. Vol. 93. № 12. P. 3004-3012.
  116. Yamasaki K., Rahman M.H., Tsutsumi Y. et al. Circular dichroism simulation shows a site-II-to-site-1 displacement of human serum albumin-bound diclofenac by ibuprofcn //AAPS PharmSciTcch. 2000. Vol. 14. № I. El2 (http://www.pharmscitcch.com).
  117. Yoo M.J., Smith Q.R., Hage D.S. Studies of imipramine binding to human serum albumin by high-performance affinity chromatography // J. Chromatogr. B. Analyt. Tcchnol. Biomed. Life Sei. 2009. Vol. 877. № п-12. P. 1149-1154.
  118. Zatón A., Martinez A., de Gandarias J. M. The binding of thioureylenc compounds to human serum al. bumin // Biochem. Pharmacol. 1988. Vol. 37. № 16. P. 3127-3131.
  119. Zhao X., Liu R„ Chi Z. et al. New insights into the behavior of bovine scrum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies // J. Phys. C'hem. B. 2010. Vol. 114. № 16. P. 5625-5631.
  120. Zhu L., Yang F., Chen L. et al. A new drug binding subsitc on human scrum albumin and drug-drug interaction studied by X-ray crystallography // J. Struct. Biol. 2008. Vol. 162. № 1. P. 40-49.
  121. Zurawski V.R. Jr., Foster J.F. The neutral transition and the environment of the sulfhydryl side chain of bovine plasma albumin // Biochcm. 1974. Vol. 13. № 17. P. 465-471.

Views

Abstract - 26

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2011 Pshenkina N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.