Wobbling passive dynamic postural impacts as a promising method of increasing adaptive potential and improving cardiorespiratory system function

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Passive postural exertions are used to assess orthostatic tolerance, adaptation to antiorthostatic stress and to identify the physiological effects of prolonged supine. As it was shown earlier, Wobbling Passive Dynamic Postural impacts influence on the state of functional reserves, activating long-term regulatory systems.

AIM: The purpose of paper is comparative study of the dynamics of functional indices and calculated physiological indices before and after Wobbling Passive Dynamic Postural exertions and experimental hypokinesia.

MATERIALS AND METHODS: The study involved 50 conditionally healthy subjects randomly divided into two groups at a ratio of 3 to 1. The first group (38 of participants) was exposed to the Wobbling Passive Dynamic Postural impacts. The subjects were in supine position for 5 minutes and then were rotated using an automatic turntable for 10 minutes, after which they were to horizontal position for 5 minutes. The angle deflection of the turntable during the Wobbling Passive Dynamic Postural impacts was from 5 to 15 degrees above or below from the base line. The subjects of the second group (12 of participants) were supine on the turntable fixed in the horizontal position for 20 minutes, thus being exposed to voluntary experimental hypokinesia. Anthropometric indices of subjects were measured before the study; functional indices were recorded continuously throughout the test. The entire study was divided into three stages, for which the values of the calculated physiological indices were presented as averages. Statistical analysis of the differences between the measured and calculated indices was performed using nonparametric statistical tests.

RESULTS: Application of both types of exertions leads to decrease of the experienced stress and more effective blood circulation, but there are expressed differences. Thus, Wobbling Passive Dynamic Postural impacts are accompanied by a decrease in heart rate, an increase in the adaptive potential, an increase in endurance, which is confirmed by statistically significant changes in the analyzed indices. On the contrary, in the voluntary experimental hypokinesia group, by the end of the 20-minute motionless lying there was a gradual increase in heart rate, decrease in endurance indices and weakening of the adaptive potential.

CONCLUSIONS: The results obtained with the use of available, previously tested, physiological techniques permit to recommend wobbling passive dynamic postural impacts as a promising method for preventing the harmful effect of hypokinesia. An advanced study of changes in the microvasculature using modern equipment based on Laser Doppler flowmetry will allow verifying the obtained results.

Full Text

Restricted Access

About the authors

Tatyana V. Novikova

Institute of Experimental Medicine

Author for correspondence.
Email: prianishnikova.tv@iemspb.ru
ORCID iD: 0000-0002-1885-7999
SPIN-code: 5050-8827
Scopus Author ID: 57236043800

PhD student, Junior Research Associate of the Department of Ecological Physiology

Russian Federation, Saint Petersburg

Elizaveta A. Agapova

Institute of Experimental Medicine

Email: agapova.ea@iemspb.ru
ORCID iD: 0000-0002-0767-2120
SPIN-code: 3383-9600
Scopus Author ID: 57215663447

Researcher Associate of the Department of Ecological Physiology

Russian Federation, Saint Petersburg

Timofey V. Sergeev

Institute of Experimental Medicine

Email: stim9@yandex.ru
ORCID iD: 0000-0001-9088-0619
SPIN-code: 4952-5143
Scopus Author ID: 57201501819
https://iemspb.ru/department/eco-phys-dep/neuroeco-lab/

Cand. Sci. (Biol.), Head of the Biofeedback Physiology Laboratory of the Department of Ecological Physiology

Russian Federation, Saint Petersburg

Alexandr V. Shabrov

Institute of Experimental Medicine

Email: ashabrov@gmail.com
ORCID iD: 0000-0002-7644-9918
SPIN-code: 5316-7290
Scopus Author ID: 7003970182

MD, Dr. Sci. (Med.), Professor, Full Member of RAS, Chief Researcher of the Department of Ecological Physiology

Russian Federation, Saint Petersburg

Aleksei A. Anisimov

Institute of Experimental Medicine

Email: g4nslinger@gmail.com
ORCID iD: 0000-0003-1363-1971
SPIN-code: 3787-6945
Scopus Author ID: 56349671900

Cand. Sci. (Engineering), Researcher Associate of the Department of Ecological Physiology

Russian Federation, Saint Petersburg

Mariya V. Kuropatenko

Institute of Experimental Medicine

Email: kuropatenko.mv@iemspb.ru
ORCID iD: 0000-0003-4214-9412
SPIN-code: 5024-3499
Scopus Author ID: 57222538102

MD, Cand. Sci. (Med.), Assistant Professor, Leading Research Associate of the Department of Ecological Physiology

Russian Federation, Saint Petersburg

References

  1. Sergeev TV, Agapova EA, Anisimov AA, et al. Multiparameter study of the physiological reactions of the human organism to complex postural loads. Medical Academic Journal. 2021;21(4):31–46. doi: 10.17816/MAJ79459
  2. Maksimov AL, Aver’yanova IV. Hemodynamics and heart rate variability under orthostatic challenge test in young caucasian men: part 1. Ekologiya cheloveka (Human Ecology). 2021;28(1):22–31. (In Russ.) doi: 10.33396/1728-0869-2021-1-22-31
  3. Stok WJ, Karemaker JM, Berecki-Gisolf J, et al. Slow sinusoidal tilt movements demonstrate the contribution to orthostatic tolerance of cerebrospinal fluid movement to and from the spinal dural space. Physiol Rep. 2019;7(4):e14001. doi: 10.14814/phy2.14001
  4. De Luca R, Bonanno M, Vermiglio G, et al. Robotic verticalization plus music therapy in chronic disorders of consciousness: Promising results from a pilot study. Brain Sci. 2022;12(8):1045. doi: 10.3390/brainsci12081045
  5. Kondrashova T, Makar M, Proctor C, et al. Dynamic assessment of cerebral blood flow and intracranial pressure during inversion table tilt using ultrasonography. J Neurol Sci. 2019;404:150–156. doi: 10.1016/j.jns.2019.07.033
  6. Aponte-Becerra L, Novak P. Tilt test: a review. J Clin Neurophysiol. 2021;38(4):279–286. doi: 10.1097/WNP.0000000000000625
  7. Patent RF No. RU 2391084 C1/10.06.2010. Tolkachev PI, Panteleev AV, Podvyaznikov ML. Mekhanurgicheskiy stol dlya massazha i manual’noy terapii. Available from: https://patenton.ru/patent/RU2391084C1 (In Russ.)
  8. Suvorov NB, Sergeev TV, Yarmosh IV. Physiological basics of cardiorespiratory biofeedback control of oscillatory postural load. Medical Academic Journal. 2018;18(2):78–88. (In Russ.) doi: 10.17816/MAJ18278-88
  9. Guseva NL, Suvorov NB, Pryanishnikova TV. Blood and CSF flow dynamics in the brain according to EEG patterns in oscillatory postural loads. Journal of Medical and Biological Research. 2019;7(1):5–15. (In Russ.) doi: 10.17238/issn2542-1298.2019.7.1.5
  10. Kuzmin AG, Titov YuA, Suvorov NB, Kuropatenko MV. Mass-spectrometric studies of the dynamics of exhaled air composition during dynamic postural effects. Nauchnoe priborostroenie. 2020;30(4):84–93. (In Russ.) doi: 10.18358/np-30-4-i8493
  11. Yafarov AZ, Kuropatenko MV, Suvorov NB, Anisimov AA. Algorithm for analysis of the correlation between the exposure to functional tests and the dynamics of the heart rate. Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus); 2021 Jan 26–29; St. Petersburg, Moscow, Russia. Saint Petersburg: IEEE; 2021. P. 1865–1868. doi: 10.1109/ElConRus51938.2021.9396539
  12. Jordan H, Münch H. Critical studies on Kérdö’s autonomic index. Wien Z Inn Med. 1967;48(8):302–311. (In German)
  13. Order of the Ministry of Health of the Russian Federation No 869n of 26 October 2017 “Ob utverzhdenii poryadka provedeniya dispanserizatsii opredelennykh grupp vzroslogo naseleniya”. Available from: https://minzdrav.gov.ru/documents/9556-prikaz-ministerstva-zdravoohraneniya-rossiyskoy-federatsii-ot-26-oktyabrya-2017-g-869n-ob-utverzhdenii-poryadka-provedeniya-dispanserizatsii-opredelennyh-grupp-vzroslogo-naseleniya. Accessed: 7.07.2022. (In Russ.)
  14. People.maths.ox.ac.uk. Mathematical Institute [Internet]. Available from: http://people.maths.ox.ac.uk/trefethen/bmi.html. Accessed: 7.07.2022.
  15. Shmoilova AS, Vyalova MO, Shvarts YuG. Cardiovascular risk factors and blood pressure response to various types of exercise in veteran athletes. Cardiovascular Therapy and Prevention. 2021;20(3):40–48. (In Russ.) doi: 10.15829/1728-8800-2021-2575
  16. Sinkov AV, Sinkova GM. Anatomo-fiziologicheskie osnovy EKG. Irkutsk: ISMU; 2015. (In Russ.)
  17. Shkarin VV. Progress i problemy sovremennogo etapa komp’yuternogo analiza elektrokardiogramm // Kardiologiya. Spetsial’nyi vypusk zhurnala “Remedium Privolzh’e”. 2004. (In Russ.)
  18. Shubik VV, Pivovarov VV, Zaytsev GK, et al. Beat-to-beat blood pressure measurement in patients with atrial fibrillation: a step towards personalized managemen. Journal of Arrhythmology. 2021;28(1):23–32. (In Russ.) doi: 10.35336/VA-2021-1-23-32
  19. Patent RF No. RU 2391740/10.06.2010. Krasnov NV, Kuzmin AF. Kvadrupolniy mass-spectrometr. Available from: https://www.freepatent.ru/patents/2391740. (In Russ.)
  20. Pirogova EA, Ivashchenko LYa, Strapko NP. Vliyanie fizicheskikh uprazhnenii na rabotosposobnost’ i zdorov’e cheloveka. Kiev: Zdorov’’ya; 1986. (In Russ.)
  21. Sitdikov FG, Ziyatdinova NI, Zefirov TL. Fiziologicheskie osnovy diagnostiki funktsional’nogo sostoyaniya organizma: uchebnoe posobie. Kazan’; 2019. 105 p. (In Russ.)
  22. Khil’debrandt G, Mozer M, Lekhofer M. Khronobiologiya i khronomeditsina. Transl. from Germ. Moscow: Arnebiya, 2006. (In Russ.)
  23. Veyn AM, Voznesenskaya TG, Golubev VL, et al. Zabolevaniya vegetativnoi nervnoi sistemy. Ed. by A.M. Vein. Moscow: Meditsina; 1991. (In Russ.)
  24. Bayevsky RМ, Berseneva АP, Vakulin VK, et al. Otsenka effektivnosti profilakticheskikh meropriyatii na osnove izmereniya adaptatsionnogo potentsiala sistemy krovoobrashcheniya. Health Care of the Russian Federation. 1987;(8):6–10. (In Russ.)
  25. Bayevsky RМ, Berseneva АP. Otsenka adaptatsionnykh vozmozhnostei organizma i risk razvitiya zabolevanii. Moscow: Meditsina; 1997. (In Russ.)
  26. Robinson В. Relation of heart rate and systolic blood pressure to the onset of pain in angina pectoris. Circulation. 1967;35(6):1073–1083. doi: 10.1161/01.cir.35.6.1073
  27. Dubrovskii VI. Sportivnaya meditsina: uchebnik. 2nd ed. Moscow: VLADOS; 2002.
  28. Aidaraliev AA, Maksimov AL. Human adaptation to extreme conditions: Experience of forecasting. Leningrad: Nauka; 1988.
  29. Patent RF No. RU 2147831/27.04.2000. Byul. No. 12. Shejkh-Zade JuR, Shejkh-Zade KJu. Sposob opredeleniya urovnya stressa. Available from: https://www.freepatent.ru/patents/2147831. (In Russ.) Accessed: 07.07.2022.
  30. Kérdö I. An index for the evaluation of vegetative tonus calculated from the data of blood circulation. Acta Neuroveg (Wien). 1966;29(2):250–268. (In German). doi: 10.1007/BF01269900
  31. Petri A, Sebin K. Naglyadnaya meditsinskaya statistika. Ed. by V.P. Leonov. 3rd ed. Mosсow: GEOTAR-Media; 2015. (In Russ.)
  32. Zubov NN, Kuvakin VI, Umarov SZ. Biomeditsinskaya statistika: informatsionnye tekhnologii analiza dannykh v meditsine i farmatsii: uchebnoe posobie. Mosсow; 2021. (In Russ.)
  33. Bereznyi EA, Rubin AM, Utekhina GA. Prakticheskaya kardioritmografiya. 3rd ed. Moscow: Neo; 2005.
  34. Meditsinskaya reabilitatsiya: uchebnik dlya studentov i vrachei. Ed. by V.N. Sokrut, N.I. Yablonskii. Slavyansk: Vash imidzh; 2015. (In Russ.)
  35. Yadrischenskaya TV. Typological features of vegetative Regulation in the aspect of system relationship. Sovremennaja nauka: aktual’nye problemy teorii i praktiki. Seriya: Poznanie. 2022;(1):64–68. (In Russ.) doi: 10.37882/2500-3682.2022.01.19
  36. Golovin NL, Gushchin AG. The psychophysiological status of young men and girls with different vegetative tonus. Yaroslavl Pedagogical Bulletin. 2010;3(3):85–88. (In Russ.)
  37. Rakhmanov RS, Bogomolova ES, Piskarev YuG, et al. Assessment of the adequacy of amateur sports by the functional status of students. Public Health and Life Environment — PH&LE. 2021;29(10):60–66. (In Russ.) doi: 10.35627/2219-5238/2021-29-10-60-66
  38. Pavlikova AD, Baturin AE, Rogozhnikov MA, Losev YuN. Metodika bor’by so stressom i povyshenie stressoustoichivosti. In: Teoriya i metodika fizicheskogo vospitaniya, sportivnoi trenirovki, ozdorovitel’noi i adaptivnoi fizicheskoi kul’tury. Ed. by Sh.A. Kerimov. Saint Petersburg; 2021. P. 61–64. (In Russ.)
  39. Moroz GA, Vasil’eva VV, Kulik NM, et al. Teoreticheskie i prakticheskie aspekty fizicheskoi reabilitatsii i sportivnoi meditsiny: uchebnoe posobie. Simferopol; 2013.
  40. Semеnova NV, Ovtina YuN, Vyaltsin AS, Kosheleva II. Assessment of indicators of the level of physical preparedness of students of medical higher education institution and factors affecting it. Modern Problems of Science and Education. 2019;(4):162–166. (In Russ.)
  41. Pigasova AA, Savochkina DI. The health status of medical students in a modern learning environment. International Student Scientific Herald. 2017;(2):43. (In Russ.)
  42. Gaptar MI, Kovaleva OA. Evaluation of the functional state and level of physical development of students. Proceedings of the International Scientific and Practical Internet Conference “Modern problems of formation of students’ healthy lifestyle”; 2018 May 16–17; Minsk, Belarus. Minsk: BSU; 2018. P. 3–7.
  43. Repalova NV, Avdeyva EV. Change in the adaptive potential of the cardiovascular system in foreign students under pre-examination stress. International Journal of Applied and Fundamental Research. 2021;(4):12–16. (In Russ.) doi: 10.17513/mjpfi.13197
  44. Kolomietс OI, Petrushkinа NP, Bykov EV. The quality of the recovery process of athletes after aerobic exercise and after the flight. Bulletin of rehabilitation medicine. 2018;(2(84)):124–128. (In Russ.)
  45. Baevskii RM, Berseneva AP, Luchitskaya ES, et al. Otsenka urovnya zdorov’ya pri issledovanii prakticheski zdorovykh lyudei. Moscow: Slovo; 2009. (In Russ.)
  46. Roslyakova EM, Alipbekova AS, Igibayeva AS. Indicators of the functional state of the cardiovascular system of students in the conditions for adaptation to training in the higher educational institution depending on the vegetative status. International Journal of Applied and Fundamental Research. 2017;(5-2):252–256. (In Russ.)
  47. Naletova LA. Evaluation of the functional state of the organism of students town of ulan-ude by method of analysis of work of the cardiovascular system. Vestnik Buryatskogo gosudarstvennogo universiteta. Biologiya. Geografiya. 2018;(3):67–70. (In Russ.) doi: 10.18101/2587-7143-2018-3-67-70
  48. Scholkmann F, Wolf U. The pulse-respiration quotient: a powerful but untapped parameter for modern studies about human physiology and pathophysiology. Front Physiol. 2019;10:371. doi: 10.3389/fphys.2019.00371
  49. Cheyne WS, Harper MI, Gelinas JC. Mechanical cardiopulmonary interactions during exercise in health and disease. J Appl Physiol (1985). 2020;128(5):1271–1279. doi: 10.1152/japplphysiol.00339.2019
  50. Belyayeva VA. Analysis of Central Hemodynamic Parameters in Medical Students during the Pre-Examination Study Period. Public Health and Life Environment — PH&LE. 2021;(10):67–73. (In Russ.) doi: 10.35627/2219-5238/2021-29-10-67-73
  51. Leonov SA, Sorokina VV, Mokasheva EkN, Mokasheva EvgN. Endurance coefficient as a predictive criterion of the level of stress resistance and adaptive capabilities of medical university students. European journal of natural history. 2021;(2):58–62. (In Russ.)
  52. Ilkevich KB, Gusev AV, Afonina GS. Analysis of physical and functional state of the body of students studying applied computer science. Uchenye zapiski universiteta imeni P.F. Lesgafta. 2020;(10(188)):145–148. (In Russ.) doi: 10.34835/issn.2308-1961.2020-10-145-148
  53. Fedorovich AA, Markov DS, Malishevsky MV, et al.Microcirculatory disorders in the forearm skin in the acute phase of COVID-19 according to laser Doppler flowmetry. Regional blood circulation and microcirculation. 2022;21(3):56–63. (In Russ.) doi: 10.24884/1682-6655-2022-21-3-56-63
  54. Sidorov VV, Rybakov YL, Gukasov VM, Evtushenko GS. A system of local analyzers for noninvasive diagnostics of the general state of the tissue microcirculation system of human skin. Biomed Eng. 2022;55:379–382. doi: 10.1007/s10527-022-10140-3
  55. Dunaev AV, Zharkikh EV, Loktionova YI, et al. Application of wearable multimodal devices to study microcirculatory-tissue systems under microgravity conditions. Proceedings of 2022 International Conference Laser Optics; 2022 Jun 20–24; St. Petersburg, Russia. Saint Petersburg: IEEE; 2022. doi: 10.1109/ICLO54117.2022.9839922
  56. Andreeva IV, Vinogradov AA, Telia VD, Simakov RYu. Impact of food load test on microcirculation parameters in the liver of rats of different gender and age. Regional blood circulation and microcirculation. 2022;21(1):71–77. (In Russ.) doi: 10.24884/1682-6655-2022-21-1-71-77

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The subjects: a — of wobbling passive dynamic postural group; b — of voluntary experimental hypokinesia group

Download (160KB)
3. Fig. 2. The ratio of the direction of the dynamics of changes in the parameters of the subjects within the groups of wobbling passive dynamic postural impacts (left column) and voluntary experimental hypokinesia (right column) at the 19th minute to the 4th: a — functional indicators; b — functional indicators and physiological indices tending to the ideal value or range; c — physiological indices. HR — heart rate; SBP — systolic blood pressure; DBP — diastolic blood pressure; MAP — mean arterial pressure; PP — pulse blood pressure; RR — respiratory rate; PRQ — pulse-respiration quotient; KAI — Kerdo autonomic index; PCL — physical condition level; HC — health coefficient; IFC — index of functional changes; AP — adaptive potential; RI — Robinson index; CE — coefficient of endurance; CEC — coefficient of blood circulation efficiency; SEL — stress experienced level. 1 p = 0.04; 2 p = 0.01; 3 p = 0.04; 4 p = 0.04; 5 p = 0.04; 6 p = 0.02

Download (303KB)
4. Fig. 3. Changes in parameters of subjects exposed to wobbling passive dynamic postural (WPDP) impacts or voluntary experimental hypokinesia (VEH) by the 19th minute compared with the 4th: а — functional parameters; b — physiological indices. Markers show the value of the median, whiskers show the boundaries of the interquartile range. For index designations, see the caption to Fig. 1

Download (145KB)
5. Fig. 4. Distribution of subjects according to Kerdo autonomic index in the analyzed groups at the 19th minute of the study (% of the number of groups). WPDP — wobbling passive dynamic postural impacts; VEH — voluntary experimental hypokinesia

Download (68KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies