Действие инсулина на экспрессию гена аполипопротеина a-i в макрофагах человека

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Цель исследования — изучить влияние инсулина на уровень экспрессии гена аполипопротеина A-I (apoA-I) в макрофагах человека и выявить основные сигнальные каскады, ответственные за инсулин-опосредованную регуляцию.

Материалы и методы. Работа выполнена на макрофагах, дифференцированных из линии острой моноцитарной лейкемии THP-1, и на макрофагах, дифференцированных из моноцитов периферической крови человека. Анализ экспрессии гена apoA-I на уровне РНК проведен методом полимеразной цепной реакции в реальном времени, на уровне белка — методом проточной цитофлуорометрии. Для выявления сигнальных каскадов, ответственных за инсулин-опосредованную регуляцию гена apoA-I в макрофагах, использован ингибиторный анализ.

Результаты. Инсулин индуцирует транскрипцию гена apoA-I в макрофагах человека, но приводит к снижению уровня аполипопротеина A-I, связанного с наружной поверхностью мембраны. За индукцию транскрипции apoA-I в ответ на стимуляцию макрофагов инсулином отвечает сигнальный каскад PI3K – AKT и факторы транскрипции NF-κB и LXRs.

Заключение. С учетом полученных ранее данных можно предположить, что стимуляция макрофагов инсулином повышает уровень мРНК аполипопротеина A-I и таким образом увеличивает амплитуду антивоспалительного ответа, заключающегося в резком возрастании уровня поверхностного аполипопротеина A-I в макрофагах при действии на них провоспалительных стимулов (фактора некроза опухоли альфа, липополисахаридов).

Полный текст

Доступ закрыт

Об авторах

Екатерина Викторовна Некрасова

Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины»

Email: nekrasova@iem.sp.ru

научный сотрудник лаборатории регуляции липидного обмена отдела биохимии

Россия, Санкт-Петербург

Екатерина Владимировна Данько

Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт‑Петербургский государственный университет»

Email: danko@iem.sp.ru

студент кафедры биохимии биологического факультета

Казахстан, Санкт-Петербург

Владимир Станиславович Шавва

Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины»

Email: shavva@iem.sp.ru
SPIN-код: 5428-6800

канд. биол. наук, старший научный сотрудник лаборатории регуляции липидного обмена отдела биохимии

Россия, Санкт-Петербург

Элла Борисовна Диже

Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины»

Email: dizhe@iem.sp.ru

канд. биол. наук, ведущий научный сотрудник лаборатории регуляции липидного обмена отдела биохимии

Россия, Санкт-Петербург

Галина Николаевна Олейникова

Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины»

Email: galina@iem.sp.ru

лаборант-исследователь лаборатории регуляции липидного обмена отдела биохимии

Россия, Санкт-Петербург

Сергей Владимирович Орлов

Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт‑Петербургский государственный университет»

Автор, ответственный за переписку.
Email: serge@iem.sp.ru
ORCID iD: 0000-0002-3134-1989
SPIN-код: 1690-8110
Scopus Author ID: 7201920413
ResearcherId: N-6823-2014

кандидат биологических наук, старший научный сотрудник, отдел биохимии (ИЭМ); доцент, биологический факультет, кафедра эмбриологии (СПбГУ).

Россия, Санкт-Петербург

Список литературы

  1. Hopkins PN. Molecular biology of atherosclerosis. Physiol Rev. 2013;93(3):1317-1542. https://doi.org/10.1152/physrev.00004.2012.
  2. Никифорова А.А., Хейфиц Г.М., Алкснис Е.Г., и др. Акцепция холестерина из мембран эритроцитов подфракцией ЛПВП2b и роль лецитин-холестерин-ацилтрансферазы в этом процессе // Биохимия. – 1988. – Т. 53. – № 7-12. – С. 1334–1338. [Nikiforova AA, Kheifits GM, Alksnis EG, Parfenova NS, Klimov AN. Aktseptsiya kholesterina iz membran eritrotsitov podfraktsiey LPVP2b i rol’ letsitin-kholesterin-atsiltransferazy v etom protsesse. Biokhimiia. 1988,53(7-12):1334-1338. (In Russ.)]
  3. Shah PK, Kaul S, Nilsson J, Cercek B. Exploiting the vascular protective effects of high-density lipoprotein and its apolipoproteins: an idea whose time for testing is coming, part II. Circulation. 2001;104(20):2498-2502. https://doi.org/10.1161/hc4501.098468.
  4. Hyka N, Dayer JM, Modoux C, et al. Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood. 2001;97(8):2381-2389. https://doi.org/10.1182/blood.v97.8.2381.
  5. Burger D, Dayer J-M. High-density lipoprotein-associated apolipoprotein A-I: the missing link between infection and chronic inflammation? Autoimmun Rev. 2002;1(1-2): 111-117. https://doi.org/10.1016/s1568-9972(01)00018-0.
  6. Wadham C, Albanese N, Roberts J, et al. High-density lipoproteins neutralize C-reactive protein proinflammatory activity. Circulation. 2004;109(17):2116-2122. https://doi.org/10.1161/01.CIR.0000127419.45975.26.
  7. Haas MJ, Horani M, Mreyoud A, et al. Suppression of apolipoprotein AI gene expression in HepG2 cells by TNF alpha and IL-1beta. Biochim Biophys Acta. 2003;1623(2-3):120-128. https://doi.org/10.1016/j.bbagen.2003.08.004.
  8. Mogilenko DA, Dizhe EB, Shavva VS, et al. Role of the nuclear receptors HNF4 alpha, PPAR alpha, and LXRs in the TNF alpha-mediated inhibition of human apolipoprotein A-I gene expression in HepG2 cells. Biochemistry. 2009;48(50):11950-11960. https://doi.org/10.1021/bi9015742.
  9. Orlov SV, Mogilenko DA, Shavva VS, et al. Effect of TNFalpha on activities of different promoters of human apolipoprotein A-I gene. Biochem Biophys Res Commun. 2010;398(2):224-230. https://doi.org/10.1016/j.bbrc. 2010.06.064.
  10. Connelly MA, Williams DL. SR-BI and HDL cholesteryl ester metabolism. Endocr Res. 2004;30(4):697-703. https://doi.org/10.1081/erc-200043979.
  11. Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005;96(12):1221-1232. https://doi.org/10.1161/01.RES.0000170946.56981.5c.
  12. Higuchi K, Law SW, Hoeg JM, et al. Tissue-specific expression of apolipoprotein A-I (apoA-I) is regulated by the 5’-flanking region of the human apoA-I gene. J Biol Chem. 1988;263(34):18530-18536.
  13. Mogilenko DA, Orlov SV, Trulioff AS, et al. Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates Toll-like receptor 4 signaling in human macrophages. FASEB J. 2012;26(5):2019-2030. https://doi.org/10.1096/fj.11-193946.
  14. Shavva VS, Mogilenko DA, Nekrasova EV, et al. Tumor necrosis factor alpha stimulates endogenous apolipoprotein A-I expression and secretion by human monocytes and macrophages: role of MAP-kinases, NF-kappaB, and nuclear receptors PPARalpha and LXRs. Mol Cell Biochem. 2018;448(1-2):211-223. https://doi.org/10.1007/s11010-018-3327-7.
  15. Богомолова А.М., Шавва В.С., Никитин А.А., и др. Гипоксия как фактор регуляции экспрессии генов apoA-1, ABCA1 и компонента комплемента C3 в макрофагах человека // Биохимия. – 2019. – Т. 84. – № 5. – С. 692–703. [Bogomolova AM, Shavva VS, Nikitin AA, et al. Hypoxia as a factor involved in the regulation of the apoA-1, ABCA1, and complement C3 gene expression in human macrophages. Biokhimiia. 2019;84(5):692-703. (In Russ.)]. https://doi.org/10.1134/S0320972519050075.
  16. Huuskonen J, Vishnu M, Chau P, et al. Liver X receptor inhibits the synthesis and secretion of apolipoprotein A1 by human liver-derived cells. Biochemistry. 2006;45(50):15068-15074. https://doi.org/10.1021/bi061378y.
  17. Shavva VS, Bogomolova AM, Nikitin AA, et al. Insulin-mediated downregulation of apolipoprotein A-I gene in human hepatoma cell line HepG2: the role of interaction between FOXO1 and LXRbeta transcription factors. J Cell Biochem. 2017;118(2):382-396. https://doi.org/10.1002/jcb.25651.
  18. Shavva VS, Bogomolova AM, Nikitin AA, et al. FOXO1 and LXRalpha downregulate the apolipoprotein A-I gene expression during hydrogen peroxide-induced oxidative stress in HepG2 cells. Cell Stress Chaperones. 2017;22(1):123-134. https://doi.org/10.1007/s12192-016-0749-6.
  19. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98-107. https://doi.org/10.1038/nri2925.
  20. Bansilal S, Farkouh ME, Fuster V. Role of insulin resistance and hyperglycemia in the development of atherosclerosis. Am J Cardiol. 2007;99(4A):6B-14B. https://doi.org/10.1016/j.amjcard.2006.11.002.
  21. Fuentes L, Roszer T, Ricote M. Inflammatory mediators and insulin resistance in obesity: role of nuclear receptor signaling in macrophages. Mediators Inflamm. 2010;2010:219583. https://doi.org/10.1155/2010/219583.
  22. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219-246. https://doi.org/10.1146/annurev-physiol-021909-135846.
  23. Fan W, Morinaga H, Kim JJ, et al. FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO J. 2010;29(24):4223-4236. https://doi.org/10.1038/emboj. 2010.268.
  24. Miao H, Zhang Y, Lu Z, et al. FOXO1 involvement in insulin resistance-related pro-inflammatory cytokine production in hepatocytes. Inflamm Res. 2012;61(4):349-358. https://doi.org/10.1007/s00011-011-0417-3.
  25. Su D, Coudriet GM, Hyun Kim D, et al. FoxO1 links insulin resistance to proinflammatory cytokine IL-1beta production in macrophages. Diabetes. 2009;58(11):2624-2633. https://doi.org/10.2337/db09-0232.
  26. Iida KT, Shimano H, Kawakami Y, et al. Insulin up-regulates tumor necrosis factor-alpha production in macrophages through an extracellular-regulated kinase-dependent pathway. J Biol Chem. 2001;276(35):32531-32537. https://doi.org/10.1074/jbc.M009894200.
  27. Park YM, S RK, J AM, Silverstein RL. Insulin promotes macrophage foam cell formation: potential implications in diabetes-related atherosclerosis. Lab Invest. 2012;92(8):1171-1180. https://doi.org/10.1038/labinvest.2012.74.
  28. Tedla N, Glaros EN, Brunk UT, et al. Heterogeneous expression of apolipoprotein-E by human macrophages. Immunology. 2004;113(3):338-347. https://doi.org/10.1111/j.1365-2567.2004.01972.x.
  29. Bennett S, Breit SN. Variables in the isolation and culture of human monocytes that are of particular relevance to studies of HIV. J Leukoc Biol. 1994;56(3):236-240. https://doi.org/10.1002/jlb.56.3.236.
  30. Shavva VS, Mogilenko DA, Bogomolova AM, et al. PPARgamma represses apolipoprotein A-I gene but impedes TNFalpha-mediated ApoA-I downregulation in HepG2 Cells. J Cell Biochem. 2016;117(9):2010-2022. https://doi.org/10.1002/jcb.25498.
  31. Mogilenko DA, Kudriavtsev IV, Shavva VS, et al. Peroxisome proliferator-activated receptor alpha positively regulates complement C3 expression but inhibits tumor necrosis factor alpha-mediated activation of C3 gene in mammalian hepatic-derived cells. J Biol Chem. 2013;288(3):1726-1738. https://doi.org/10.1074/jbc.M112.437525.
  32. Cuthbert C, Wang Z, Zhang X, Tam SP. Regulation of human apolipoprotein A-I gene expression by gramoxone. J Biol Chem. 1997;272(23):14954-14960. https://doi.org/ 10.1074/jbc.272.23.14954.
  33. Haas MJ, Horani MH, Wong NC, Mooradian AD. Induction of the apolipoprotein AI promoter by Sp1 is repressed by saturated fatty acids. Metabolism. 2004;53(10):1342-1348. https://doi.org/10.1016/j.metabol.2004.05.011.
  34. Morishima A, Ohkubo N, Maeda N, et al. NFkappaB regulates plasma apolipoprotein A-I and high density lipoprotein cholesterol through inhibition of peroxisome proliferator-activated receptor alpha. J Biol Chem. 2003;278(40):38188-38193. https://doi.org/10.1074/jbc.M306336200.
  35. Nikolaidou-Neokosmidou V, Zannis VI, Kardassis D. Inhibition of hepatocyte nuclear factor 4 transcriptional activity by the nuclear factor kappaB pathway. Biochem J. 2006;398(3):439-450. https://doi.org/10.1042/ BJ20060169.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Повышение уровня матричной РНК aроA-I в макрофагах под действием инсулина. Макрофаги, дифференцированные из моноцитов периферической крови человека в течение 5 сут (a), макрофаги THP-1 (b). Указан относительный уровень экспрессии мРНК aроА-I, где за 100 % принят уровень мРНК в нестимулированных макрофагах. На диаграммах представлены средние значения ± ошибка среднего. # p < 0,01 (t-критерий)

Скачать (202KB)
3. Рис. 2. Уменьшение уровня поверхностного белка АроА-I в макрофагах под действием инсулина. K — контрольные, не обработанные инсулином макрофаги; + insulin — макрофаги, инкубированные с инсулином; X-Med — медиана интенсивности флуоресценции

Скачать (164KB)
4. Рис. 3. Схема сигнальных каскадов, инициируемых инсулином: QNZ — ингибитор NF-κB; LY294002 — ингибитор PI3K; ТО901317 — агонист LXRs

Скачать (83KB)
5. Рис. 4. Влияние инсулина на уровень мРНК apоА-I: роль ядерных рецепторов LXRs, PI3K и фактора транскрипции NF-κB. Указан относительный уровень экспрессии мРНК apoА-I, где за 100 % принят уровень мРНК в нестимулированных макрофагах. На диаграмме представлены средние значения уровня мРНК apoA-I ± ошибка среднего. Критерий Стьюдента — * p < 0,05. Критерий Даннета — # p < 0,01. Столбцы белого цвета отображают интенсивность транскрипции в контрольных клетках, столбцы черного цвета — интенсивность транскрипции в клетках, обработанных инсулином

Скачать (93KB)

© Некрасова Е.В., Данько Е.В., Шавва В.С., Диже Э.Б., Олейникова Г.Н., Орлов С.В., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.