Белок щелевых контактов коннексин-43 и его распределение в разных тканях

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Коннексины — белки, образующие у позвоночных межклеточные щелевые контакты, способствующие передаче малых молекул между клетками. Коннексин-43 — основной представитель семейства коннексинов в человеческом организме. Его функции в клетке разнообразны, он обнаружен в самом большом количестве тканей и клеток по сравнению с другими представителями семейства коннексинов. Наиболее интенсивно изучается его роль в межклеточных взаимодействиях, а также особенности выполняемых функций в жизненно важных органах — в сердце и мозге. В связи с высокой распространенностью в разных тканях в данный момент существует большой массив разрозненных экспериментальных данных, которые сложно собрать в единую картину. Данная работа ставит своей целью обобщить литературные данные об особенностях распределения и функциях коннексина-43 в различных тканях и о дальнейших перспективах изучения этого белка.

Полный текст

Доступ закрыт

Об авторах

Михаил Сергеевич Филиппов

Институт экспериментальной медицины

Email: msfilippov@mail.ru
SPIN-код: 7789-7219

лаборант-исследователь лаборатории функциональной морфологии центральной и периферической нервной системы отдела общей и частной морфологии

Россия, Санкт-Петербург

Дмитрий Эдуардович Коржевский

Институт экспериментальной медицины

Автор, ответственный за переписку.
Email: DEK2@yandex.ru
ORCID iD: 0000-0002-2456-8165
SPIN-код: 3252-3029

д-р мед. наук, профессор РАН, заведующий лабораторией функциональной морфологии центральной и периферической нервной системы отдела общей и частной морфологии

Россия, Санкт-Петербург

Список литературы

  1. Beyer E.C., Berthoud V.M. The family of connexin genes // Connexins: A Guide. Ed. by A. Harris, D. Locke. Humana Press; New York, 2009. P. 3–26. doi: 10.1007/978-1-59745-489-6_1
  2. Laird D.W. Life cycle of connexins in health and disease // Biochem. J. 2006. Vol. 394. P. 527–543. doi: 10.1042/BJ20051922
  3. Pfeifer I., Anderson C., Werner R., Oltra E. Redefining the structure of the mouse connexin43 gene: selective promoter usage and alternative splicing mechanisms yield transcripts with different translational efficiencies // Nucleic Acids Res. 2004. Vol. 32, No. 15. P. 4550–4562. doi: 10.1093/nar/gkh792
  4. Beyer E.C., Paul D.L., Goodenough D.A. Connexin43: a protein from rat heart homologous to a gap junction protein from liver // J. Cell Biol. 1987. Vol. 105, No. 6. Pt 1. P. 2621–2629. doi: 10.1083/jcb.105.6.2621
  5. Schiavi A., Hudder A., Werner R. Connexin43 mRNA contains a functional internal ribosome entry site // FEBS Lett. 1999. Vol. 464, No. 3. P. 118–122. doi: 10.1016/s0014-5793(99)01699-3
  6. Laird D.W. Syndromic and non-syndromic disease-linked Cx43 mutations // FEBS Lett. 2014. Vol. 588, No. 8. P. 1339–1348. doi: 10.1016/j.febslet.2013.12.022
  7. Leithe E., Mesnil M., Aasen T. The connexin 43 C-terminus: A tail of many tales // Biochim. Biophys. Acta Biomembr. 2018. Vol. 1860, No. 1. P. 48–64. doi: 10.1016/j.bbamem.2017.05.008
  8. Chatterjee B., Chin A.J., Valdimarsson G. et al. Developmental regulation and expression of the zebrafish connexin43 gene // Dev. Dyn. 2005. Vol. 233, No. 3. P. 890–906. doi: 10.1002/dvdy.20426
  9. Laird D.W., Puranam K.L., Revel J.P. Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes // Biochem. J. 1991. Vol. 273, No. 1. P. 67–72. doi: 10.1042/bj2730067
  10. Maeda S., Nakagawa S., Suga M. et al. Structure of the connexin 26 gap junction channel at 3.5 Å resolution // Nature. 2009. Vol. 458, No. 7238. P. 597–602. doi: 10.1038/nature07869
  11. Lee H.J., Cha H.J., Jeong H. et al. Conformational changes in the human Cx43/GJA1 gap junction channel visualized using cryo-EM // Nat. Commun. 2023. Vol. 14, No. 1. P. 931. doi: 10.1038/s41467-023-36593-y
  12. Goodenough D.A., Goliger J.A., Paul D.L. Connexins, connexons, and intercellular communication // Ann. Rev. Biochem. 1996. Vol. 65, No. 1. P. 475–502. doi: 10.1146/annurev.bi.65.070196.002355
  13. Goodenough D.A., Paul D.L. Gap junctions // Cold Spring Harb. Perspect Biol. 2009. Vol. 1, No. 1. P. a002576. doi: 10.1101/cshperspect.a002576
  14. Dhein S., Salameh A. Remodeling of cardiac gap junctional cell-cell coupling // Cells. 2021. Vol. 10, No. 9. P. 2422. doi: 10.3390/cells10092422
  15. Thévenin A.F., Kowal T.J., Fong J.T. et al. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation // Physiology (Bethesda). 2013. Vol. 28, No. 2. P. 93–116. doi: 10.1152/physiol.00038.2012
  16. Kehat I., Gepstein A., Spira A. et al. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction // Circ. Res. 2002. Vol. 91, No. 8. P. 659–661. doi: 10.1161/01.res.0000039084.30342.9b
  17. Carmeliet E. Conduction in cardiac tissue. Historical reflections // Physiol. Rep. 2019. Vol. 7, No. 1. P. e13860. doi: 10.14814/phy2.13860
  18. Delmar M., Makita N. Cardiac connexins, mutations and arrhythmias // Curr. Opin. Cardiol. 2012. Vol. 27, No. 3. P. 236–241. doi: 10.1097/HCO.0b013e328352220e
  19. De Mello W.C. Exchange of chemical signals between cardiac cells. Fundamental role on cell communication and metabolic cooperation // Exp. Cell Res. 2016. Vol. 346, No. 1. P. 130–136. doi: 10.1016/j.yexcr.2016.05.009
  20. Jansen J.A., Noorman M., Musa H. et al. Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice // Heart Rhythm. 2012. Vol. 9, No. 4. P. 600–607. doi: 10.1016/j.hrthm.2011.11.025
  21. Yang B.F., Shi J.Z, Li J. et al. Expression of Cx43 and Cx45 in cardiomyocytes of an overworked rat model // Fa Yi Xue Za Zhi. 2019. Vol. 35, No. 5. P. 567–571. doi: 10.12116/j.issn.1004-5619.2019.05.010
  22. Duffy H.S. The molecular mechanisms of gap junction remodeling // Heart Rhythm. 2012. Vol. 9, No. 8. P. 1331–1334. doi: 10.1016/j.hrthm.2011.11.048
  23. Mezache L., Nuovo G.J., Suster D. et al. Histologic, viral, and molecular correlates of heart disease in fatal COVID-19 // Ann. Diagn. Pathol. 2022. Vol. 60. P. 151983. doi: 10.1016/j.anndiagpath.2022.151983
  24. Wahl C.M., Schmidt C., Hecker M., Ullrich N.D. Distress-mediated remodeling of cardiac connexin-43 in a novel cell model for arrhythmogenic heart diseases // Int. J. Mol. Sci. 2022. Vol. 23, No. 17. P. 10174. doi: 10.3390/ijms231710174
  25. Michela P., Velia V., Aldo P., Ada P. Role of connexin 43 in cardiovascular diseases // Eur. J. Pharmacol. 2015. Vol. 768. P. 71–76. doi: 10.1016/j.ejphar.2015.10.030
  26. Dhein S. Gap junction channels in the cardiovascular system: pharmacological and physiological modulation // Trends Pharmacol. Sci. 1998. Vol. 19, No. 6. P. 229–241. doi: 10.1016/s0165-6147(98)01192-4
  27. Eloff B.C., Gilat E., Wan X., Rosenbaum D.S. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy // Circulation. 2003. Vol. 108, No. 25. P. 3157–3163. doi: 10.1161/01.CIR.0000101926.43759.10
  28. De Vuyst E., Boengler K., Antoons G. et al. Pharmacological modulation of connexin-formed channels in cardiac pathophysiology // Br. J. Pharmacol. 2011. Vol. 163, No. 3. P. 469–483. doi: 10.1111/j.1476-5381.2011.01244.x
  29. Суфиева Д.А., Кирик О.В., Коржевский Д.Э. Астроцитарные маркеры в таницитах третьего желудочка головного мозга крысы в постнатальном онтогенезе и при старении // Онтогенез. 2019. Т. 50, № 3. С. 205–214. doi: 10.1134/S0475145019030066
  30. Yamamoto T., Ochalski A., Hertzberg E.L., Nagy J.I. On the organization of astrocytic gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression // J. Comp. Neurol. 1990. Vol. 302, No. 4. P. 853–883. doi: 10.1002/cne.903020414
  31. Rash J.E., Yasumura T., Dudek F.E., Nagy J.I. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons // J. Neurosci. 2001. Vol. 21, No. 6. P. 1983–2000. doi: 10.1523/JNEUROSCI.21-06-01983.2001
  32. Nagy J., Patel D., Ochalski P., Stelmack G. Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance // Neuroscience. 1999. Vol. 88, No. 2. P. 447–468. doi: 10.1016/s0306-4522(98)00191-2
  33. Orthmann-Murphy J.L., Abrams C.K., Scherer S.S. Gap junctions couple astrocytes and oligodendrocytes // J. Mol. Neurosci. 2008. Vol. 3, No. 1. P. 101–116. doi: 10.1007/s12031-007-9027-5
  34. Magnotti L.M., Goodenough D.A., Paul D.L. Functional heterotypic interactions between astrocyte and oligodendrocyte connexins // Glia. 2011. Vol. 59, No. 1. P. 26–34. doi: 10.1002/glia.21073
  35. Wasseff S.K., Scherer S.S. Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling // Neurobiol. Dis. 2011. Vol. 42, No. 3. P. 506–513. doi: 10.1016/j.nbd.2011.03.003
  36. Connors B.W., Long M.A. Electrical synapses in the mammalian brain // Annu. Rev. Neurosci. 2004. Vol. 27. P. 393–418. doi: 10.1146/annurev.neuro.26.041002.131128
  37. Rash J.E., Yasumura T., Davidson K.G. et al. Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord // Cell Commun. Adhes. 2001. Vol. 8, No. 4–6. P. 315–320. doi: 10.3109/15419060109080745
  38. Jiménez A.J., Domínguez-Pinos M.D., Guerra M.M. et al. Structure and function of the ependymal barrier and diseases associated with ependyma disruption // Tissue Barriers. 2014. Vol. 2. P. e28426. doi: 10.4161/tisb.28426
  39. Zhang J., Chandrasekaran G., Li W. et al. Wnt-PLC-IP3-Connexin-Ca2+ axis maintains ependymal motile cilia in zebrafish spinal cord // Nat. Commun. 2020. Vol. 11, No. 1. P. 1860. doi: 10.1038/s41467-020-15248-2
  40. Liu X., Bolteus A.J., Balkin D.M. et al. GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes // Glia. 2006. Vol. 54, No. 5. P. 394–410. doi: 10.1002/glia.20392
  41. Roales-Buján R., Páez P., Guerra M. et al. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus // Acta Neuropathol. 2012. Vol. 124, No. 4. P. 531–546. doi: 10.1007/s00401-012-0992-6
  42. Mambetisaeva E.T., Gire V., Evans W.H. Multiple connexin expression in peripheral nerve, Schwann cells, and Schwannoma cells // J. Neurosci. Res. 1999. Vol. 57, No. 2. P. 166–175. doi: 10.1002/(SICI)1097-4547(19990715)57:2<166::AID-JNR2>3.0.CO;2-Y
  43. Yoshimura T., Satake M., Kobayashi T. Connexin43 is another gap junction protein in the peripheral nervous syste // J. Neurochem. 1996. Vol. 67, No. 3. P. 1252–1258. doi: 10.1046/j.1471-4159.1996.67031252.x
  44. Procacci P., Magnaghi V., Pannese E. Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin43 throughout life with decline in old age // Brain Res. Bull. 2008. Vol. 75, No. 5. P. 562–569. doi: 10.1016/j.brainresbull.2007.09.007
  45. Risley M.S., Tan I.P., Roy C., Sáez J.C. Cell-, age- and stage-dependent distribution of connexin43 gap junctions in testes // J. Cell. Sci. 1992. Vol. 103, No. 1. P. 81–96. doi: 10.1242/jcs.103.1.81
  46. Steger K., Tetens F., Bergmann M. Expression of connexin 43 in human testis // Histochem. Cell Biol. 1999. Vol. 112, No. 3. P. 215–220. doi: 10.1007/s004180050409
  47. Knapczyk-Stwora K., Durlej-Grzesiak M., Duda M., Slomczynska M. Expression of connexin 43 in the porcine foetal gonads during development // Reprod. Domest. Anim. 2013. Vol. 48, No. 2. P. 272–277. doi: 10.1111/j.1439-0531.2012.02144.x
  48. Pérez-Armendariz E.M, Lamoyi E., Mason J.I. et al. Developmental regulation of connexin 43 expression in fetal mouse testicular cells // Anat. Rec. 2001. Vol. 264, No. 3. P. 237–246. doi: 10.1002/ar.1164
  49. Almeida J., Conley A.J., Mathewson L., Ball B.A. Expression of anti-Müllerian hormone, cyclin-dependent kinase inhibitor (CDKN1B), androgen receptor, and connexin 43 in equine testes during puberty // Theriogenology. 2012. Vol. 77, No. 5. P. 847–857. doi: 10.1016/j.theriogenology.2011.09.007
  50. Rüttinger C., Bergmann M., Fink L. et al. Expression of connexin 43 in normal canine testes and canine testicular tumors // Histochem. Cell Biol. 2008. Vol. 130, No. 3. P. 537–548. doi: 10.1007/s00418-008-0432-9
  51. Ahmed N., Yang P., Chen H. et al. Characterization of inter-Sertoli cell tight and gap junctions in the testis of turtle: Protect the developing germ cells from an immune response // Microb. Pathog. 2018. Vol. 123. P. 60–67. doi: 10.1016/j.micpath.2018.06.037
  52. Izzo G., d’Istria M., Ferrara D. et al. Connexin 43 expression in the testis of the frog Rana esculenta // Zygote. 2006. Vol. 14, No. 4. P. 349–357. doi: 10.1017/S096719940600390X
  53. Kotula-Balak M., Hejmej A., Sadowska J., Bilinska B. Connexin 43 expression in human and mouse testes with impaired spermatogenesis // Eur. J. Histochem. 2007. Vol. 51, No. 4. P. 261–268. doi: 10.4081/1150
  54. Rode K., Weider K., Damm O.S. et al. Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis // Reprod. Biol. 2018. Vol. 18, No. 4. P. 456–466. doi: 10.1016/j.repbio.2018.08.001
  55. Günther S., Fietz D., Weider K. et al. Effects of a murine germ cell-specific knockout of Connexin 43 on Connexin expression in testis and fertility // Transgenic Res. 2013. Vol. 22, No. 3. P. 631–641. doi: 10.1007/s11248-012-9668-1
  56. Haverfield J.T., Meachem S.J., O’Bryan M.K. et al. Claudin-11 and connexin-43 display altered spatial patterns of organization in men with primary seminiferous tubule failure compared with controls // Fertil. Steril. 2013. Vol.100, No. 3. P. 658–666. doi: 10.1016/j.fertnstert.2013.04.034
  57. Lee N.P., Leung K.W., Wo J.Y. et al. Blockage of testicular connexins induced apoptosis in rat seminiferous epithelium // Apoptosis. 2006. Vol. 11, No. 7. P. 1215–1229. doi: 10.1007/s10495-006-6981-2
  58. Pointis G., Segretain D. Role of connexin-based gap junction channels in testis // Trends Endocrinol. Metab. 2005. Vol. 16, No. 7. P. 300–306. doi: 10.1016/j.tem.2005.07.001
  59. Sridharan S., Brehm R., Bergmann M., Cooke P.S. Role of connexin 43 in Sertoli cells of testis // Ann. NY Acad. Sci. 2007. Vol. 1120. P. 131–143. doi: 10.1196/annals.1411.004
  60. Gilleron J., Carette D., Durand P. et al. Connexin 43 a potential regulator of cell proliferation and apoptosis within the seminiferous epithelium // Int. J. Biochem. Cell Biol. 2009. Vol. 41, No. 6. P. 1381–1390. doi: 10.1016/j.biocel.2008.12.008
  61. Chojnacka K., Brehm R., Weider K. et al. Expression of the androgen receptor in the testis of mice with a Sertoli cell specific knock-out of the connexin 43 gene (SCCx43KO(-/-)) // Reprod. Biol. 2012. Vol. 12, No. 4. P. 341–346. doi: 10.1016/j.repbio.2012.10.007
  62. Rode K., Weider K., Damm O.S. et al. Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis // Reprod. Biol. 2018. Vol. 18, No. 4. P. 456–466. doi: 10.1016/j.repbio.2018.08.001
  63. Gerber J., Heinrich J., Brehm R. Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice // Reproduction. 2016. Vol. 151, No. 2. P. R15–27. doi: 10.1530/REP-15-0366
  64. Chevallier D., Carette D., Gilleron J. et al. The emerging role of connexin 43 in testis pathogenesis // Curr. Mol. Med. 2013. Vol. 13, No. 8. P. 1331–1344. doi: 10.2174/15665240113139990066
  65. Alves L.A., Campos de Carvalho A.C., Cirne Lima E.O. et al. Functional gap junctions in thymic epithelial cells are formed by connexin 43 // Eur. J. Immunol. 1995. Vol. 25, No. 2. P. 431–437. doi: 10.1002/eji.1830250219
  66. Dorshkind K., Green L., Godwin A., Fletcher W.H. Connexin-43-type gap junctions mediate communication between bone marrow stromal cells // Blood. 1993. Vol. 82, No. 1. P. 38–45. doi: 10.1182/blood.v82.1.38.bloodjournal82138
  67. Montecino-Rodriguez E., Dorshkind K. Regulation of hematopoiesis by gap junction-mediated intercellular communication // J. Leukoc. Biol. 2001. Vol. 70, No. 3. P. 341–347. doi: 10.1189/jlb.70.3.341
  68. Krenacs T., Rosendaal M. Immunohistological detection of gap junctions in human lymphoid tissue: connexin43 in follicular dendritic and lymphoendothelial cells // J. Histochem. Cytochem. 1995. Vol. 43. P. 1125–1137. doi: 10.1177/43.11.7560895
  69. Taniguchi Ishikawa E., Gonzalez-Nieto D., Ghiaur G. et al. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109, No. 23. P. 9071–9076. doi: 10.1073/pnas.1120358109
  70. Oviedo-Orta E., Howard Evans W. Gap junctions and connexin-mediated communication in the immune system // Biochim. Biophys. Acta. 2004. Vol. 1662, No. 1–2. P. 102–112. doi: 10.1016/j.bbamem.2003.10.021
  71. Wilgenbus K.K., Kirkpatrick C.J., Knuechel R. et al. Expression of Cx26, Cx32 AND Cx43 gap junction proteins in normal and neoplastic human tissues // Int. J. Cancer. 1992. Vol. 51, No. 4. P. 522–529. doi: 10.1002/ijc.2910510404
  72. Salomon D., Masgrau E., Vischer S. et al. Topography of mammalian connexins in human skin // J. Invest. Dermatol. 1994. Vol. 103, No. 2. P. 240–247. doi: 10.1111/1523-1747.ep12393218
  73. Butterweck A., Elfgang C., Willecke K., Traub O. Differential expression of the gap junction proteins connexin45, -43, -40, -31, and -26 in mouse skin // Eur. J. Cell Biol. 1994. Vol. 65, No. 1. P. 152–163.
  74. Tan M.L.L., Kwong H.L., Ang C.C. et al. Changes in connexin 43 in inflammatory skin disorders: Eczema, psoriasis, and Steven-Johnson syndrome/toxic epidermal necrolysis // Health Sci. Rep. 2021. Vol. 4, No. 1. P. e247. doi: 10.1002/hsr2.247
  75. Little T.L., Beyer E.C., Duling B.R. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo // Am. J. Physiol. 1995. Vol. 268, No. 2. P. H729–739. doi: 10.1152/ajpheart.1995.268.2.H729
  76. Sedovy M.W., Leng X., Leaf M.R. et al. Connexin 43 across the vasculature: gap junctions and beyond // J. Vasc. Res. 2023. Vol. 60, No. 2. P. 101–113. doi: 10.1159/000527469
  77. Wang Y.F., Daniel E.E. Gap junctions in gastrointestinal muscle contain multiple connexins // Am. J. Physiol. Gastrointest. Liver Physiol. 2001. Vol. 281. P. G533–G543. doi: 10.1152/ajpgi.2001.281.2.G533
  78. Neuhaus J., Weimann A., Stolzenburg J.U. et al. Smooth muscle cells from human urinary bladder express connexin 43 in vivo and in vitro // World J. Urol. 2002. Vol. 20, No. 4. P. 250–254. doi: 10.1007/s00345-002-0289-9
  79. Sakai N., Tabb T., Garfield R.E. Studies of connexin 43 and cell-to-cell coupling in cultured human uterine smooth muscle // Am. J. Obstet. Gynecol. 1992. Vol. 167, No. 5. P. 1267–1277. doi: 10.1016/s0002-9378(11)91699-8
  80. Чумасов Е.И., Петрова Е.С., Коржевский Д.Э. Oсобенности иннервации эпикардиальной жировой ткани у крысы при старении (иммуногистохимическое исследование) // Успехи геронтологии. 2022. Т. 35, № 1. С. 85–92. doi: 10.34922/AE.2022.35.1.009
  81. Yeganeh A., Stelmack G.L., Fandrich R.R. et al. Connexin 43 phosphorylation and degradation are required for adipogenesis // Biochim. Biophys. Acta. 2012. Vol. 1823, No. 10. P. 1731–1744. doi: 10.1016/j.bbamcr.2012.06.009
  82. Kim S.N., Kwon H.J., Im S.W. et al. Connexin 43 is required for the maintenance of mitochondrial integrity in brown adipose tissue // Sci. Rep. 2017. Vol. 7, No. 1. P. 7159. doi: 10.1038/s41598-017-07658-y
  83. Turovsky E.A., Varlamova E.G., Turovskaya M.V. Activation of Cx43 hemichannels induces the generation of Ca2+ oscillations in white adipocytes and stimulates lipolysis // Int. J. Mol. Sci. 2021. Vol. 22. P. 8095. doi: 10.3390/ijms22158095
  84. Burke S., Nagajyothi F., Thi M.M. et al. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease // Microbes Infect. 2014. Vol. 16, No. 11. P. 893–901. doi: 10.1016/j.micinf.2014.08.006
  85. González-Casanova J.E., Durán-Agüero S., Caro-Fuentes N.J. et al. New insights on the role of connexins and gap junctions channels in adipose tissue and obesity // Int. J. Mol. Sci. 2021. Vol. 22, No. 22. P. 12145. doi: 10.3390/ijms222212145
  86. Cascio M., Kumar N.M., Safarik R., Gilula N.B. Physical characterization of gap junction membrane connexons (hemi-channels) isolated from rat liver // J. Biol. Chem. 1995. Vol. 270. P. 18643–18648. doi: 10.1074/jbc.270.31.18643
  87. Berthoud V.M., Iwanij V., Garcia A.M., Sáez J.C. Connexins and glucagon receptors during development of rat hepacinus // Am. J. Physiol. 1992. Vol. 263. P. G650–658. doi: 10.1152/ajpgi.1992.263.5.G650
  88. Bode H.P., Wang L., Cassio D. et al. Expression and regulation of gap junctions in rat cholangiocytes // Hepatology. 2002. Vol. 36. P. 631–640. doi: 10.1053/jhep.2002.35274
  89. Greenwel P., Rubin J., Schwartz M. et al. Liver fat-storing cell clones obtained from a CCl4-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, and connexin 43 // Lab. Invest. 1993. Vol. 69. P. 210–216.
  90. Saez C.G., Eugenin E., Hertzberg E.L., Saez J.C. Regulation of gap junctions in rat liver during acute and chronic CCl4-induced liver injury // From Ion Channels to Cell-to-Cell Conversations. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA, 1997. P. 367–380. doi: 10.1007/978-1-4899-1795-9_21
  91. Willebrords J., Crespo Yanguas S., Maes M. et al. Structure, regulation and function of gap junctions in liver // Cell Commun. Adhes. 2015. Vol. 22, No. 2–6. P. 29–37. doi: 10.3109/15419061.2016.1151875
  92. Marconi P., Tamura M., Moriuchi S. et al. Connexin 43-enhanced suicide gene therapy using herpesviral vectors // Mol. Ther. 2000. Vol. 1, No. 1. P. 71–81. doi: 10.1006/mthe.1999.0008
  93. Pitts J.D. Cancer gene therapy: a bystander effect using the gap junctional pathway // Mol. Carcinog. 1994. Vol. 11, No. 3. P. 127–130. doi: 10.1002/mc.2940110302
  94. Colombo B.M., Benedetti S., Ottolenghi S. et al. The “bystander effect”: association of U-87 cell death with ganciclovir-mediated apoptosis of nearby cells and lack of effect in athymic mice // Hum. Gene Ther. 1995. Vol. 6, No. 6. P. 763–772. doi: 10.1089/hum.1995.6.6-763
  95. Shinoura N., Chen L., Wani M.A. et al. Protein and messenger RNA expression of connexin43 in astrocytomas: implications in brain tumor gene therapy // J. Neurosurg. 1996. Vol. 84, No. 5. P. 839–845. doi: 10.3171/jns.1996.84.5.0839
  96. Bonacquisti E.E., Nguyen J. Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions // Cancer Lett. 2019. Vol. 442. P. 439–444. doi: 10.1016/j.canlet.2018.10.043
  97. Matono S., Tanaka T., Sueyoshi S. et al. Bystander effect in suicide gene therapy is directly proportional to the degree of gap junctional intercellular communication in esophageal cancer // Int. J. Oncol. 2003. Vol. 23, No. 5. P. 1309–1315. doi: 10.3892/ijo.23.5.1309
  98. Kandouz M., Batist G. Gap junctions and connexins as therapeutic targets in cancer // Expert Opin. Ther. Targets. 2010. Vol. 14, No. 7. P. 681–692. doi: 10.1517/14728222.2010.487866
  99. McCutcheon S., Spray D.C. Glioblastoma-astrocyte connexin 43 gap junctions promote tumor invasion // Mol. Cancer Res. 2022. Vol. 20, No. 2. P. 319–331. doi: 10.1158/1541-7786.MCR-21-0199

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок. Выявление вставочных дисков в кардиомиоцитах сердца человека с использованием реакции на Cx43 (препарат из архива отдела общей и частной морфологии ФГБНУ «ИЭМ»). Ядра кардиомиоцитов окрашены красителем SYTOX Green, Cx43 — антителами, визуализированными флуорохромом Су3

Скачать (335KB)

© Эко-Вектор, 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах